М1618 и М1620, АМПЕРМЕТРЫ М1621 и М1621.1

Руководство по эксплуатации ЗПА.324.171 РЭ

Метр. экспертиза проведена "14" 11 2014 С

ОАО «Приборостроительный завод «Вибратор» 194292, Санкт-Петербург, 2-ой Верхний пер., д.5 лит.А

2443 Deg 5.08.04

имен.						ОГЛАВЛЕНИЕ			
Перв. примен		1	НОРМАТИ	ВНЫЕ (ССЫЛ	ІКИ			3
Пер		2	? ОПРЕДЕЛІ	ЕНИЯ, С	обоз	НАЧЕНИЯ, СОКРАЩЕНИЯ			4
		3	В ТРЕБОВАН	ния бе	30ПА	АСНОСТИ			4
		4	НАЗНАЧЕН	НИЕ					4
		5	ТЕХНИЧЕ(СКИЕ ДА	АННЬ	IE			9
		6	З УСТРОЙС ^Т	ТВО И Р	РАБО	ТА ПРИБОРА			15
Справ. №		7	′ РАЗМЕЩЕ	ние и і	MOH	ГАЖ			16
Спра		8	в ПОВЕРКА						17
		9	ВОЗМОЖН	НЫЕ НЕ	ИСПЕ	РАВНОСТИ И СПОСОБЫ ИХ УСТРА	АНЕНИ	Я	18
		1	0 ПРАВИЛА	A XPAHE	ЕНИЯ	І И ТРАНСПОРТИРОВАНИЯ			19
<u>a</u>									
и дата									
Подп.									
дубл.	<u> </u>								
Инв.№ дубл.									
-									
Взам.инв. №									
Взам.									
дата	_								
Подп. и	-					3ΠA.324.171 F	23		
ĭ	:	изм Лист	№ докум.	Подп.	Дата	3.17.132.1.17.11		_	
471.	-	Разраб. Пров.	Власоова Симхович			Амперметры и вольтметры М1618 и М1620	Лит. А	Лист 2	Листов 24
Инв.№ подл.	-	·				Амперметры М1621 и М1621.1			
ИНВ.	-	Н.Контр. Утв.	Зубенко Симхович			Руководство по эксплуатации			

Инв. № подл. Подп. и дата Взам. инв.№ Инв. №дубл.

Настоящее руководство по эксплуатации предназначено для ознакомления с техническими характеристиками, устройством, принципом действия, правилами эксплуатации и поверки амперметров и вольтметров М1618 и М1620, амперметров М1621 и М1621.1.

1 НОРМАТИВНЫЕ ССЫЛКИ

ГОСТ РВ 8.576-2000 – Порядок проведения поверки средств измерений в сфере обороны и безопасности Российской Федерации

ГОСТ 8.497-83 – Государственная система обеспечения единства измерений. Амперметры, вольтметры, ваттметры, варметры. Методика поверки

ГОСТ 12.2.007.0-75 — Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 17516.1-90 – Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам.

ГОСТ 25804.1 – 25804.8-83 – Аппаратура, приборы, устройства и оборудование систем управления технологическими процессами атомных электростанций

НП-001-15 – Общие положения обеспечения безопасности атомных станций.

НП-016-05 — Общие положения обеспечения безопасности объектов ядерного топливного цикла (ОПБ ОЯТЦ)

НП-031-01 – Нормы проектирования сейсмостойких атомных станций.

НП-071-18 — Правила оценки соответствия продукции, для которой устанавливаются требования, связанные с обеспечением безопасности в области использования атомной энергии, а также процессов ее проектирования (включая изыскания), производства, строительства, монтажа, наладки, эксплуатации, хранения, перевозки, реализации, утилизации и захоронения.

ПОКАС (И) – Программа обеспечения качества при изготовлении электроизмерительных приборов для АЭС.

СТО 1.1.1.07.001.0675-2017 — Атомные станции. Аппаратура, приборы, средства систем контроля и управления. Общие технические требования.

СТО 1.1.1.01.001.0891-2013 — Контрольно-измерительные приборы для атомных станций. Технические требования эксплуатирующей организации

ТУ 25-04.3913-80 – Приборы щитовые унифицированной серии. Технические условия.

Условия поставки № 01–1874–62

					١
Изм	Лист	№ докум.	Подп.	Дата	Ì

Амперметры и вольтметры щитовые, постоянного тока ударо- и вибропрочные, виброустойчивые: M1618, M 1620, M1621 и M1621.1 — приборы.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 Требования безопасности по ТУ 25-04.3913-80 и ТУ 25-04.3926-80

Приборы в части защиты от поражения электрическим током удовлетворяют требованиям класса 3 ГОСТ 12.2.007.0.

- 3.2 Работа с приборами, монтаж и демонтаж с целью регулировки и ремонта производится персоналом, проинструктированным по технике безопасности.
- 3.3 При установке приборов и шунтов соблюдать правила техники безопасности при работе с приборами, находящимися под высоким напряжением.

Класс безопасности по НП-001 для приборов исполнения «ОИАЭ» — 3.

Будьте осторожны в обращении с приборами! Перед началом эксплуатации тщательно проверить правильность монтажа.

4 НАЗНАЧЕНИЕ

Приборы предназначены для измерения тока и напряжения в цепях постоянного тока (М1621 и М1621.1 – для дистанционного измерения), а также неэлектрических величин, если они преобразованы в сигнал постоянного тока или напряжения.

Приборы М1618, М1620 и М1621 предназначены для работы при температуре окружающего воздуха от минус 40 до плюс 55 °C и относительной влажности 100 % при 50 °C, приборы М1621.1 – от минус 10 до плюс 55 °C и относительной влажности до 98 % при 35 °C

Приборы М1618, М1620, М1621 выпускаются в следующих исполнениях:

- «ОП» оборудование, поставляемое на общепромышленные объекты (с приемкой ОТК, либо Морского, либо Речного Регистров);
- «ОИАЭ» оборудование, поставляемое на объекты использования атомной энергии – с приемкой ОТК и приемкой Представителя УО (уполномоченной организации) Заказчика;
- «ВП» оборудование, поставляемое в интересах обороны и безопасности (с приемкой ОТК и Представителя Заказчика), в том числе изготавливаемое по «Условиям поставки № 01-1874-62».

Приборы M1621.1 выпускаются исполнения «ОП» с приемкой ОТК, либо Морского, либо Речного Регистров.

Приборы исполнения «ВП» могут быть изготовлены по «Условиям поставки № 01–1874–62».

Подп. и дата Взам
Z Z

дата

Подп.и

1нв. №дубл.

изм Лист № докум. Подп. Дата

3ΠA.324.171 PЭ

Условное обозначение заказа амперметров М1618: $\underline{\mathsf{M1618}} - \underline{\mathsf{XX}} - \underline{\mathsf{X}} - \underline{\mathsf{XX}}$ Тип прибора Код диапазона измерений Диапазон Диапазон Код Код измерений измерений 01 0-250 мкА 31 150-0-150 A 02 0-500 мкА 32 200-0-200 A 03 0-5 мА 300-0-300 A 33 04 0-10 A 34 500-0-500 A 05 0-20 A 35 750-0-750 A 06 0-30 A 36 1-0-1 кА 07 0-50 A 37 1,5-0-1,5 кА 0-75 A 80 38 2-0-2 кА 09 0-100 A 39 3-0-3 кА 10 0-150 A 40 4-0-4 кА 11 0-200 A 41 5-0-5 кА 6-0-6 кА 12 0-300 A 42 13 0-500 A 43 **Заряд 0-1 кА** 14 0-750 A 44 Заряд 0-1,5 кA 15 0-1 кА 45 Заряд 0-2 кА 16 0-1,5 кА 46 **Заряд 0-3 кА** 17 0-2 кА 47 **Заряд 0-4 кА** 18 0-3 кА 48 Заряд 0-5 кА 19 0-4 кА 49 Заряд 0-7,5 кА 20 0-5 кА 50 Заряд 0-10 кА 21 0-6 кА 51 Заряд 0-1 кА /Разряд 0-3 кА 22 250-0-250 мкА 52 Заряд 0-1,5 кА /Разряд 0-4 кА 23 500-0-500 мкА 53 Заряд 0-2 кА /Разряд 0-5 кА 24 5-0-5 мА 54 Заряд 0-2 кА /Разряд 0-6 кА 25 10-0-10 A 55 Заряд 0-3 кА /Разряд 0-7,5 кА 26 20-0-20 A 56 Заряд 0-5 кА /Разряд 0-10 кА 27 30-0-30 A 57 Заряд 0-7,5 кА /Разряд 0-15 к<mark>А</mark> 50-0-50 A 58 28 Заряд 0-10 кА /Разряд 0-20 кА 29 75-0-75 A 59 Заряд 0-4 кА /Разряд 0-7,5 кА 30 100-0-100 A Покрытие таблички и циферблата 1 –белое; 2 - светящееся. Значение сопротивления соединительных калиброванных проводов: 00 - отсутствует; 01 – 0,035 Ом (стандартный); 02 - 0.07 Om;03 – 0,088 Ом; 04 - 0,105 Om; 05 - 0.14 Ом: 06 - 0,175 Om;07 - 0,192 Om;08 - 0.21 Om;09 - 0,228 Om;10 - 0,245 Om; 11 - 0,262 Om;12 - 0.28 Om; $13 - 0.35 \, \text{Om}.$ Лист 3ΠA.324.171 PЭ 5 Лист № докум. Подп. Дата

дата

Подп.и

№дубл

ZHB.

일

инв.]

зам.

മ്പ

дат

Подп. и

Инв. № подл.

Условное обозначение заказа вольтметров М1618:

M1618 - XX - X

Тип прибора

Код диапазона измерений -

Код	Диапазон
Код	измерений
01	0-5 B
02	0-10 B
03	5-0-5 B
04	10-0-10 B

Покрытие таблички и циферблата -

- 1 белое;
- 2 светящееся.

Условное обозначение заказа вольтметров М1620:

 $\underline{\mathsf{M1620}} - \underline{\mathsf{XX}} - \underline{\mathsf{X}}$

Тип прибора

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

Код диапазона измерений ———

Код	Диапазон измерений	Код	Диапазон измерений
01	0-10 B	16	10-0-10 B
02	0-15 B	17	15-0-15 B
03	0-30 B	18	30-0-30 B
04	0-50 B	19	50-0-50 B
05	0-75 B	20	75-0-75 B
06	0-100 B	21	100-0-100 B
07	0-150 B	22	150-0-150 B
80	0-250 B	23	250-0-250 B
09	0-300 B	24	300-0-300 B
10	0-400 B	25	400-0-400 B
11	0-500 B	26	500-0-500 B
12	0-600 B	27	600-0-600 B
13	0-750 B	28	750-0-750 B
14	0-1000 B	29	1000-0-1000 B
15	0-1500 B	30	1500-0-1500 B

Покрытие таблички и циферблата

- 1 белое;
- 2 светящееся.

Изм	Лист	№ докум.	Подп.	Дата

3ПА.324.171 РЭ

Λ4 I	Диапазон измерений	Код	Диапазон измерений	_		
01	0-250 мкА	27	500-0-500 мкА			
02	0-500 мкА	28	5-0-5 A			
03	0-2 мА	29	10-0-10 A	\neg		
)4	0-5 мА	30	20-0-20 A			
05	0-20 мА	31	30-0-30 A			
06	0-4-20 мА	32	50-0-50 A			
07	0-5 A	33	75-0-75 A			
08	0-10 A	34	100-0-100 A			
)9	0-20 A	35	200-0-200 A			
10	0-30 A	36	300-0-300 A			
11	0-50 A	37	500-0-500 A			
12	0-75 A	38	750-0-750 A			
13	0-100 A	39	1-0-1 кА			
14	0-200 A	40	1,5-0-1,5 кА			
5	0-300 A	41	2-0-2 кА	-		
16	0-500 A	42	3-0-3 кА	-		
17	0-750 A	43	4-0-4 кА	\dashv \mid \mid		
18	0-1 кА	44	5-0-5 кА	\dashv \mid \mid		
19	0-1,5 кА	45	6-0-6 кА	\dashv \mid \mid		
20	0-2 кА	46	7,5-0-7,5 кА	\dashv \mid \mid		
21	0-3 кА	47	0-150 A	\dashv \mid \mid		
22	0-4 кА	48	150-0-150 A	-		
23	0-5 кА	49	5-0-5 мА	-		
24	0-6 кА					
	0-6 кА 0-7.5 кА					
25	0-7,5 кА 250-0-250 мкА					
25 26 Погаторова 3 начени калиброво 00 – отоворова 00 – отоворова 01 – 0,0 02 – 0,0 03 – 0,1 05 – 0,1 06 – 0,1 07 – 0,1 08 – 0,2 10 – 0,2 11 – 0,2	0-7,5 кА 250-0-250 мкА крытие таблички и цисте; гящееся. ие сопротивления сованных проводов: сутствует; 035 Ом (стандартны 07 Ом; 088 Ом; 105 Ом; 14 Ом; 175 Ом; 192 Ом; 21 Ом; 228 Ом; 245 Ом;	оединител —	1ьных			
1 —бело 2 — свет Значені калибро 00 — ото 01 — 0,0 02 — 0,0 03 — 0,0 04 — 0,1 05 — 0,1 07 — 0,1 08 — 0,2 09 — 0,2	0-7,5 кА 250-0-250 мкА крытие таблички и цисте; гящееся. ие сопротивления сованных проводов: сутствует; 035 Ом (стандартны 07 Ом; 088 Ом; 105 Ом; 14 Ом; 175 Ом; 192 Ом; 21 Ом; 228 Ом; 245 Ом; 262 Ом;	оединител —		3ΠA.324.171	I PЭ	

 $\underline{\mathsf{M1620}} - \underline{\mathsf{XX}} - \underline{\mathsf{X}} - \underline{\mathsf{XX}}$

Условное обозначение заказа амперметров М1620:

Тип прибора

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

Код диапазона измерений

Условное обозначение заказа амперметров М1621:

M1621 - XX - X

Тип прибора

Код диапазона измерений

Код	Диапазон	Код	Диапазон
КОД	измерений	Код	измерений
01	0-30 A	18	30-0-30 A
02	0-50 A	19	50-0-50 A
03	0-75 A	20	75-0-75 A
04	0-100 A	21	100-0-100 A
05	0-150 A	22	150-0-150 A
06	0-200 A	23	200-0-200 A
07	0-300 A	24	300-0-300 A
80	0-500 A	25	500-0-500 A
09	0-750 A	26	750-0-750 A
10	0-1 кА	27	1-0-1 кА
11	0-1,5 кА	28	1,5-0-1,5 кА
12	0-2 кА	29	2-0-2 кА
13	0-3 кА	30	3-0-3 кА
14	0-4 кА	31	4-0-4 кА
15	0-5 кА	32	5-0-5 кА
16	0-6 кА	33	6-0-6 кА
17	0-7,5 кА	34	7,5-0-7,5 кА

Покрытие таблички и циферблата

- 1 белое;
- 2 светящееся.

Инв. №дубл.	
Взам. инв.№	
Подп. и дата	
з. № подл.	

Подп.и дата

Изм	Лист	№ докум.	Подп.	Дата

M1621.1 - XX - X

Тип прибора

Код диапазона измерений

		,	
Код	Диапазон	Код	Диапазон
КОД	измерений	КОД	измерений
01	0-30 A	18	30-0-30 A
02	0-50 A	19	50-0-50 A
03	0-75 A	20	75-0-75 A
04	0-100 A	21	100-0-100 A
05	0-150 A	22	150-0-150 A
06	0-200 A	23	200-0-200 A
07	0-300 A	24	300-0-300 A
80	0-500 A	25	500-0-500 A
09	0-750 A	26	750-0-750 A
10	0-1 кА	27	1-0-1 кА
11	0-1,5 кА	28	1,5-0-1,5 кА
12	0-2 кА	29	2-0-2 кА
13	0-3 кА	30	3-0-3 кА
14	0-4 кА	31	4-0-4 кА
15	0-5 кА	32	5-0-5 кА
16	0-6 кА	33	6-0-6 кА
17	0-7,5 кА	34	7,5-0-7,5 кА

Покрытие таблички и циферблата

1 – белое;

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

2 – светящееся.

5 ТЕХНИЧЕСКИЕ ДАННЫЕ

5.1 Диапазоны измерений и способы подключения к сети приведены в таблицах 1 – 7.

Таблица 1 - Вольтметры, миллиамперметры, микроамперметры М1618.

Диапазон измерений	Способ подключения
0 – 5 B	
0 – 10 B	
0 – 5 мА	Непосредственное
0 – 250 мкА	
0 – 500 мкА	

	L					
	ſ					
	ſ					
изм Лист № докум. Подп. Дата		Изм	Лист	№ докум.	Подп.	Дата

3ПА.324.171 РЭ

Таблица 2 - Амперметры М1618, предназначенные для измерения тока заряда и разряда аккумуляторных батарей.

Диапазон из	мерений, кА	Подключение с наружным шунтом 100 мВ
Заряд Разряд		на номинальный ток, кА
0 – 1	0 – 3	2
0 – 1,5	0 – 4	3
0-2	0 – 5	4
0-2	0 – 6	4
0 – 3	0 – 7,5	6
0 – 4	0 – 7,5	6
0 – 5	0 – 10	10
0 – 7,5	0 – 15	15
0 – 10	0 – 20	20

Таблица 3 - Амперметры М1618

Диапазон измерений,	Диапазон измерений,	Способ
А	кА	подключения
0 – 10	0 – 1	
0 – 20	0 – 1,5	
0 – 30	0 – 2	
0 – 50	0 – 3	
0 – 75	0 – 4	С тремя наружными
0 – 100	0 – 5	шунтами 75 мВ и
0 – 150	0 – 6	переключателем П1825
0 – 200		
0 – 300		
0 – 500		
0 – 750		

и.пдоП	
Инв. №дубл.	
Взам. инв.№	
Подп. и дата	
Инв. № подл.	

Изм	Лист	№ докум.	Подп.	Дата

Таблица 4 - Вольтметры М1620

таолица 4 - вольтметры м	
Диапазон измерений, В	Способ подключения
0 – 10	
0 – 15	
0 – 30	
0 – 50	
0 – 75	
0 – 100	
0 – 150	
0 – 250	Непосредственное
0 – 300	
0 – 400	
0 – 500	
0 – 600	
0 – 750	
0 – 1000	
0 – 1500	

Таблица 5 - Амперметры М1620

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

Диапазон	Способ	Диапазон	Способ
измерений, А	подключения	измерений, кА	подключения
0 – 5		0 – 1	
0 – 10	Непосредственное	0 – 1,5	
0 – 20		0 – 2	
0 – 30		0 – 3	
0 – 50		0 – 4	С наружным
0 – 75		0 – 5	шунтом 75 мВ
0 – 100	С наружным	0 – 6	шунгом 73 мв
0 – 200	шунтом 75 мВ	0 - 7,5	
0 – 300			
0 – 500			
0 – 750			

Изм	Лист	№ докум.	Подп.	Дата
			_	

3ПА.324.171 РЭ

Лист

11

Диапазон измерений	Способ подключения
0 – 250 мкА, 0 – 500 мкА 0 – 2 мА	
0 – 2 MA 0 – 5 MA	Непосредственное
0 – 20 mA (0 – 4 – 20 mA)	

Таблица 7 - Амперметры М1621 и М1621.1

Диапазон измерений, А	Диапазон измерений, кА	Способ подключения
0 – 30; 0 – 50; 0 – 75	0 - 1; 0 - 1,5; 0 - 2	С наружным шунтом
0 – 100; 0 – 150	0-3; 0-4; 0-5	75 мВ и резистором Р1830, имеющим
0 – 200; 0 – 300	0 – 6; 0 – 7,5	сопротивление
0 – 500; 0 – 750		(3.5 ± 0.02) Om

Примечания

Подп.и дата

Инв. №дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

1 Приборы, указанные в таблицах 1, 3 – 7, могут быть изготовлены с нулевой отметкой внутри диапазона измерений с симметричными двухсторонними шкалами, кроме миллиамперметров М1620 (таблица 6).

2 По согласованию с предприятием-изготовителем приборы могут быть изготовлены с диапазонами измерений, не указанными в таблицах 3 – 7, но в соответствии с действующими стандартами.

3 Амперметры М1618 (таблица 3) и М1620 (таблица 5) с наружными шунтами должны быть отградуированы с калиброванными соединительными проводами (от шунта к амперметру) сопротивлением 0,035 Ом. Калиброванные провода должны поставляться комплектно с прибором. Шунты в комплект поставки не входят.

4 По особому заказу могут быть изготовлены амперметры М1618 (таблицы 2, 3) и М1620 (таблица 5), отградуированные для работы с соединительными проводами (СП) сопротивлением 0,07; 0,088; 0,105; 0,14; 0,175; 0,192; 0,21; 0,228; 0,245; 0,262; 0,28 и 0,35 Ом. В этих случаях соединительные провода предприятиемизготовителем не поставляются.

Изм	Лист	№ докум.	Подп.	Дата

3ПА.324.171 РЭ

По согласованию с предприятием-изготовителем допускается изготовление амперметров с нулевой отметкой внутри диапазона измерений с симметричными двухсторонними шкалами. Погрешность подгонки соединительных проводов ± 0,003 Ом.

5 Амперметры М1618 (таблица 2) в режиме «Разряд» в контакте с шунтами на 100 мВ должны работать в течение времени, оговорённым техническими условиями на шунты.

6 По согласованию с предприятием-изготовителем амперметры М1618 (таблица 3) могут быть изготовлены с нулевой отметкой внутри диапазона измерений, с левой частью шкалы, составляющей 5 % от верхнего значения диапазона измерений.

7 По согласованию с предприятием-изготовителем могут быть изготовлены приборы, отградуированные в любых единицах физических величин преобразованных во входной сигнал постоянного тока или напряжения, в частности, градуировка шкалы приборов М1620, предназначенных по заказу для тахометров, производится в об/мин.

8 Приборы, предназначенные для подключения в токовую цепь контролируемых объектов с помощью наружных шунтов, изготавливаются как милливольтметры и поставляются со шкалами, отградуированными в единицах силы тока в соответствии с таблицами 2, 3, 5 и 7.

9 Внутреннее сопротивление миллиамперметров M1620 с током полного отклонения 2 мА должно быть (2000 \pm 200) Ом, 5 мА (38 \pm 6) Ом, 20 мА (150 \pm 25) Ом. Ток полного отклонения вольтметров M1620 - не более 3 мА.

10 10 Внутреннее сопротивление для вольтметров М1618 и М1620 с диапазонами измерений 0 - 10 В и 10-0-10 В - 20 кОм.

11 11 По согласованию с предприятием—изготовителем допускается изготовление приборов с чистыми шкалами, имеющими начальную и конечную отметки шкалы, нанесенные черной тушью.

Предел допускаемой основной погрешности приборов на всех числовых отметках шкалы равен:

- ± 1 % для приборов M1618;
- ± 1,5 % для приборов M1620, M1621, M1621.1

Предел допускаемой дополнительной погрешности приборов, вызванной:

— изменением температуры окружающей среды от нормальной (20 \pm 5) °C до любой температуры в пределах от минус 40 до плюс 55 °C для приборов М1618, М1620, М1621 и от минус 10 до плюс 55 °C для приборов М1621.1 равен 0,5 предела допускаемой основной погрешности на каждые 10 °C изменения температуры, а для

Изм	Лист	№ докум.	Подп.	Дата

Инв. № подл.

амперметров M1620, отградуированных с сопротивлением проводов, отличным от 0,035 Ом — 0,8 предела допускаемой основной погрешности;

- влиянием внешнего магнитного поля постоянного тока напряженностью 400 А/м при самом неблагоприятном направлении тока, равен 0,5 предела допускаемой основной погрешности;
- изменением положения прибора (наклоном) от нормального положения в любом направлении на 45°, равен \pm 1 %;
- установкой прибора на ферромагнитном щите толщиной (2,5 \pm 0,5) мм или влиянием рядом расположенного прибора, равен \pm 0,5 %

Погрешность нормируется в процентах от конечного значения диапазона измерений – для приборов с нулем слева и от суммы модулей конечных значений диапазона измерений – для приборов с нулевой отметкой внутри диапазона измерений.

Погрешность приборов, отградуированных в единицах неэлектрических величин, нормируется по входному сигналу тока или напряжения без учета погрешности внешних, не входящих в комплект поставки приборов, преобразователей неэлектрических величин во входной сигнал постоянного тока или напряжения.

Погрешность амперметров с наружными шунтами нормируются по входному сигналу напряжения без шунтов.

Погрешность измерения неэлектрических величин, а также погрешность измерения тока с помощью наружных шунтов, определяется как сумма погрешности прибора и погрешности преобразователя неэлектрической величины во входной сигнал тока (напряжения) или, соответственно, как сумма погрешности прибора и погрешности наружного шунта.

Время установления показаний не превышает 3 сек.

Испытательное напряжение изоляции при температуре окружающего воздуха (20 ± 5) °C и относительной влажности 80 %:

- -2 кВ для всех амперметров, а также вольтметров с конечным значением диапазона измерений до 600 В, резистора подгоночного Р1830, переключателя П1825;
- 3 кВ для вольтметров с конечным значением диапазона измерений свыше
 600 до 1000 В.
 - 5 кВ для вольтметров с конечным значением шкалы свыше 1000 до 1500 В.

Сопротивление изоляции электрических цепей приборов относительно корпуса при температуре окружающего воздуха (20 ± 5) °C и относительной влажности 80 % не менее 20 MOm.

Длина шкалы приборов (180 ± 8) мм.

Изм	Лист	№ докум.	Подп.	Дата

3ΠA.324.171 PЭ

ЛНВ. № ПОДЛ.

Угол шкалы $(230 \pm 10)^{\circ}$.

Габаритные размеры и масса приборов, резистора подгоночного P1830 и переключателя П1825 соответствуют данным, приведенным в таблице 8.

Таблица 8 – Габаритные размеры и масса

Габаритные размеры, мм	Масса, кг не более
120x120x126	1,2
118x39x50	0,15
160x150x123	1,5
	120x120x126 118x39x50

6 УСТРОЙСТВО И РАБОТА ПРИБОРА

Амперметры и вольтметры представляют собой приборы магнитоэлектрической системы униполярной конструкции, изготовленные в корпусах брызгозащищенного исполнения и предназначенные для утопленного монтажа.

Конструктивно приборы состоят из измерительного механизма, корпуса, цоколя и наличника. Корпус изготавливается из термопластичной, трудногорючей пластмассы — поликарбонат стабилизированный и имеет два отсека. В переднем отсеке размещается измерительный механизм, в заднем отсеке — элементы электрической схемы. К задней части корпуса крепится пластмассовый цоколь. Передняя часть прибора закрывается наличником из алюминиевого сплава, в котором предварительно устанавливается смотровое стекло. В центре стекла расположен корректор с уплотняющей прокладкой, обеспечивающей брызгозащищенность приборов.

Шкалы приборов изготавливаются из термопластичной пластмассы. Отметки шкал наносятся на наружном приподнятом крае циферблата таким образом, что конец стрелки находится в одной плоскости с ними. Этим при отсчете исключается ошибка от параллакса. В нижней части шкал приборов наносятся обозначения измеряемой величины и данные характеризующие приборы.

Конструкция опор обеспечивает пружинную амортизацию подвижной части приборов от сотрясений и вибрации, как в осевом, так и в радиальном направлениях.

Переключатель П1825 оформлен в прямоугольном литом корпусе брызгозащищенного исполнения.

Корпус переключателя снабжен четырьмя ушками для крепления.

Приборы не создают радиопомех по принципу действия.

Приборы исполнения «ОИАЭ» соответствуют группе размещения 6 в соответствии с СТО 1.1.1.07.001.0675, СТО 1.1.1.01.001.0891, НП-071, НП-016 и Про-

Изм	Лист	№ докум.	Подп.	Дата	

грамме обеспечения качества ПОКАС (И). По сейсмостойкости приборы относятся к категории II в соответствии с НП-031 (сейсмостойкость 8 баллов по МСК-64, уровень установки над нулевой отметкой до 25 м в соответствии с ГОСТ 17516.1.). Изготовление приборов производится в соответствии с требованиями ГОСТ 25804.1 – 25804.8.

Перед началом измерения убедитесь, что при отключенном питании стрелка прибора находится на нулевой отметке шкалы. В противном случае, пользуясь корректором, установите её на нуль. При этом имейте в виду, что направление поворота корректора совпадает с направлением перемещения стрелки, а угол поворота корректора ограничен.

7 РАЗМЕЩЕНИЕ И МОНТАЖ

Разметку щита для монтажа приборов производите тщательно, без перекосов в соответствии с габаритным чертежом (рисунки 2 – 4).

Приборы монтируются на электрически заземленных щитах.

Особое внимание обратите на то, чтобы резиновые втулки амортизационной прокладки полностью вошли в отверстия на щите.

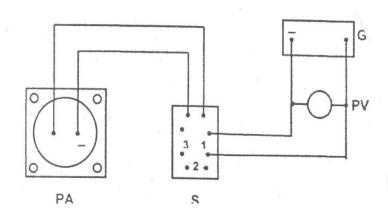
Схемы подключения амперметров и вольтметров к сети представлены на рисунках 5 – 11.

Амперметры с наружным шунтом, как правило, подключайте к шунту калиброванными проводами длинной 1,5 м и сечением 1,5 мм², которые входят в комплект прибора.

Сопротивление проложенной линии между переключателем П1825 и прибором М1618, измеренное при температуре (20 \pm 5) $^{\circ}$ C, равно 0,035 Ом с допуском \pm 0,002 Ом.

С помощью переключателя П1825 амперметрами М1618 можете производить измерение тока прямого и обратного направлений поочередно в трех цепях.

Инв. № подл. подп. и дата Взам. инв. № Инв. № 4убл. Подп.и дата


изм Лист № докум. Подп. Дата

3ПА.324.171 РЭ

Производить поверку приборов не реже одного раза в два года, а также после каждого ремонта в соответствии с требованиями ГОСТ РВ 8.576 и ГОСТ 8.497.

Поверка амперметра М1618 с переключателем П1825 производится по схеме, приведенной на рисунке 1. Амперметр М1618 подсоединяется к зажимам переключателя с надписью «К амперметру».

Образцовый прибор и источник напряжения подключаются к одной из пар зажимов «1», «2» или «3», причем рукоятка переключателя ставится в соответствующее положение.

РА – испытуемый прибор М1618;

S – переключатель П1825;

G – источник регулируемого напряжения постоянного тока;

PV – образцовый милливольтметр на 75 мВ, класса точности 0,2.

Рисунок 1 - Схема поверки амперметра М1618 с переключателем П1825

Инв. № подл. и дата Взам. инв.№ Медубл. Подп.и дата

Изм	Лист	№ докум.	Подп.	Дата
		,		

3ПА.324.171 РЭ

9 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Вероятная причина

Перечень возможных неисправностей приведен в таблице 8.

Таблица 8

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

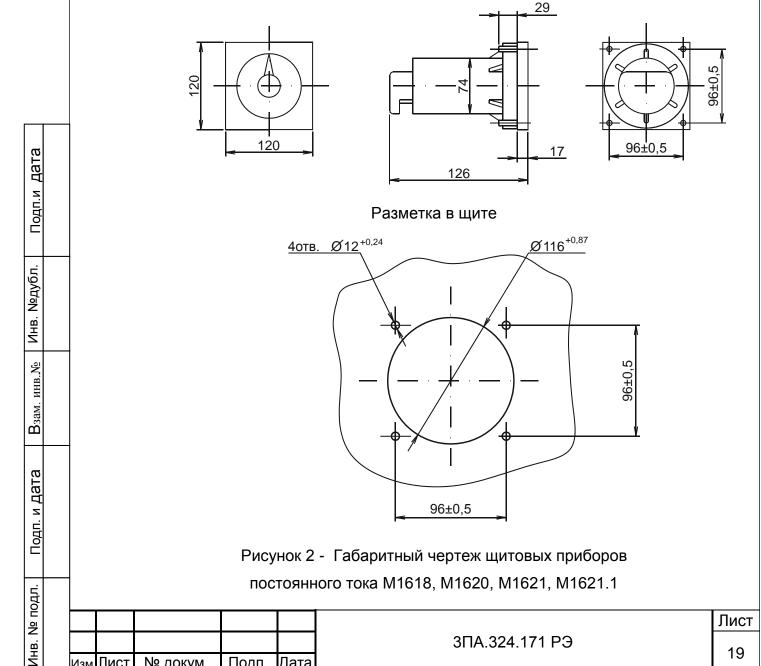
Инв. № подл.

Наименование неисправностей,

внешнее проявление и

дополнительные признаки		
Haman and Haman	Наличие грязи на за- жимах прибора	Протрите зажимы этиловым спиртом
Сопротивление изоляции электриче- ских цепей относительно корпуса прибора менее допустимого	Длительное пребывание прибора в условиях повышенной влажности воздуха	Вскройте прибор и просушите его при температуре не выше 60 °C до получения необходимого сопротивления изоляции
Стрелка включенного прибора не от- клоняется или отклоняется на непро- должительное время и вновь воз- вращается к нулевой отметке	Нет надежного контакта в местах подключения кабеля и проводников к зажимам прибора, шунта или предохранителя	Создайте надежный электрический контакт в местах подключения кабеля и проводников
	Обрыв жилы кабеля или проводника	Устраните обрыв в кабеле или провод- нике
Стрелка включенного прибора не от- клоняется	Обрыв в рамке под- вижной части	Вскройте прибор и замените подвижную часть
Прибор резко изменил показания. Основная погрешность показаний прибора превышает допустимую величину	Замыкание витков подвижной части	Вскройте прибор и замените подвижную часть
Прибор изменил показания. Дополнительная погрешность от изменения положения прибора превышает допустимую величину	Изменение уравнове- шенности подвижной части	Вскройте прибор и отбалансируйте подвижную часть
Стрелка прибора остановилась на какой-либо отметке шкалы и не сдвигается при изменении напряжения	Затирание подвижной части из-за наличия посторонних предметов или грязи в зазоре между подвижным элементом (рамочкой) и магнитной системой	Вскройте прибор, извлеките посторонние предметы и грязь из рабочего зазора

Примечание: Проверку технического состояния приборов после устранения неисправности производите в соответствии с разделом 8.


Изм	Лист	№ докум.	Подп.	Дата

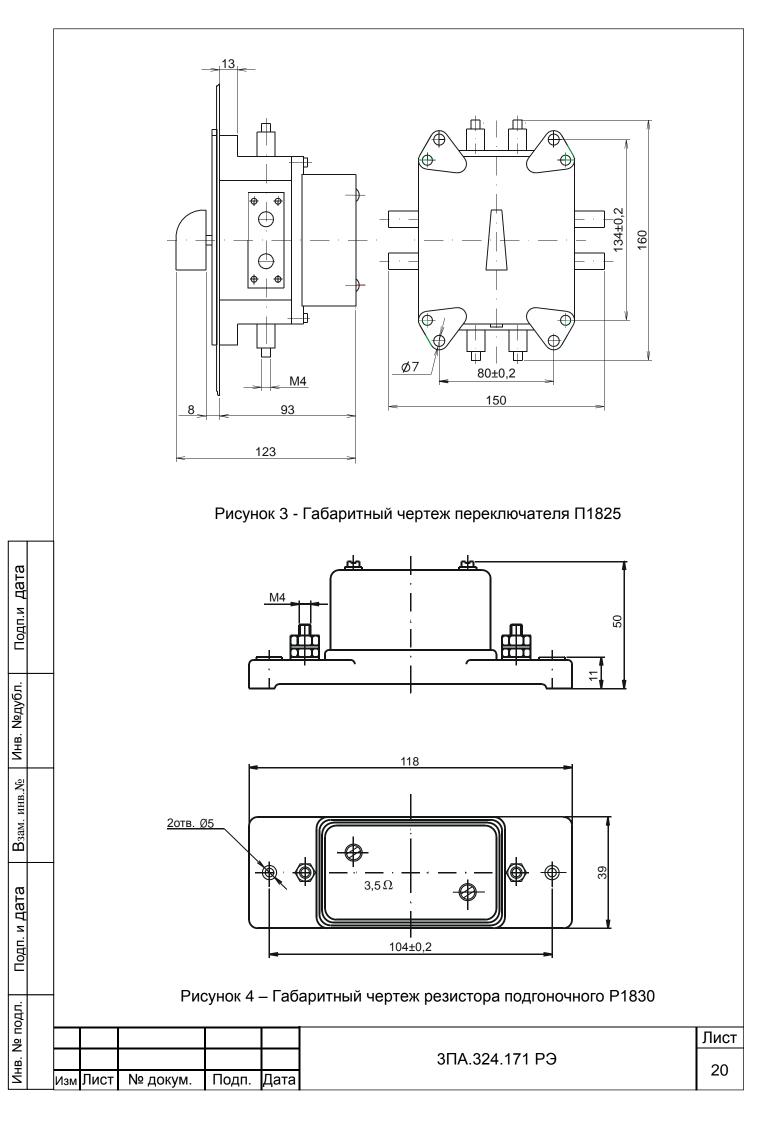
Способ устранения

Приборы должны храниться в упаковке в закрытых отапливаемых помещениях на стеллажах температуре окружающего воздуха от 5 до 40 °C и относительной влажности до 80 % при температуре 25 °C.

Приборы можно транспортировать в упаковке по ГОСТ 9181 при температуре окружающего воздуха от минус 50 до плюс 70 °C и относительной влажности до 100 % при 50 °C для приборов М1618, М1621, М1621 и от минус 10 до плюс 70 °C и относительной влажности до 98 % при 35 °C для приборов М1621.1 всеми видами транспорта, а самолетами - в герметизированных отапливаемых отсеках.

В связи с постоянной работой по совершенствованию изделия, повышающей его надежность и улучшающей эксплуатационные качества, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

Лист


№ докум.

Подп.

3ΠA.324.171 PЭ

Лист

19

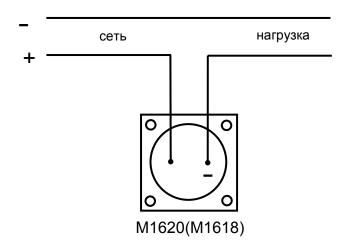


Рисунок 5 - Схема непосредственного подключения миллиамперметра и микроамперметра М1618, миллиамперметра и амперметра М1620

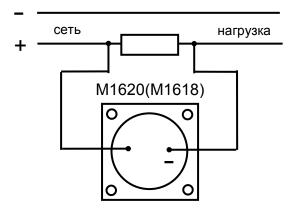


Рисунок 6 - Схема подключения амперметра М1620 с наружным шунтом и М1618 «Заряд»

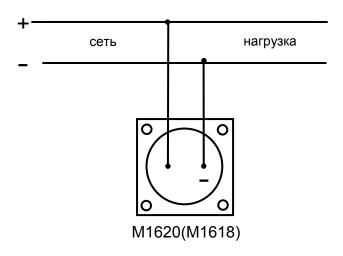


Рисунок 7 - Схема подключения вольтметров М1618 и М1620

				_	
					Ì
Изм	Лист	№ докум.	Подп.	Дата	l

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

3ПА.324.171 РЭ

Лист

21

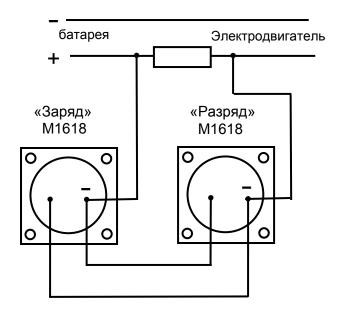
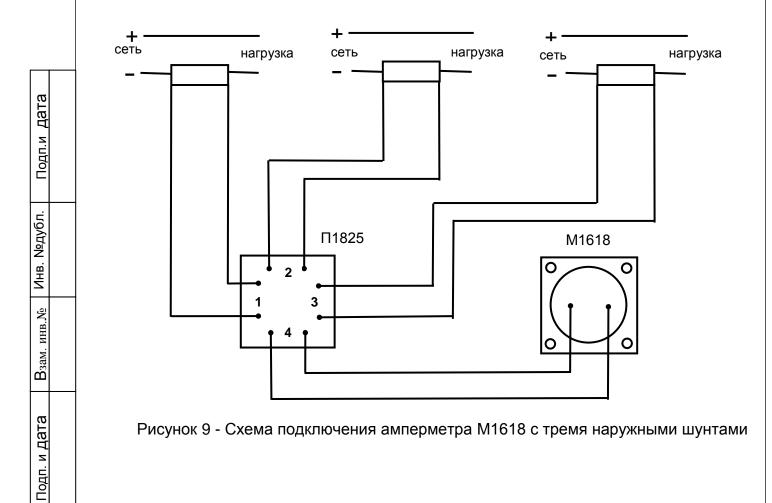



Рисунок 8 - Схема подключения амперметров М1618, предназначенных для измерения тока заряда и разряда аккумуляторных батарей

3ПА.324.171 РЭ

Лист

22

Инв. № подл.

изм Лист

№ докум.

Подп.

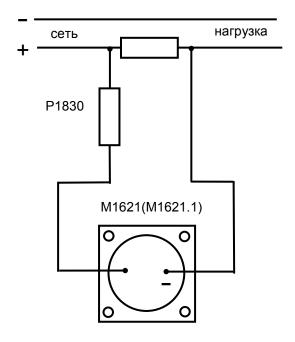


Рисунок 10 - Схема подключения амперметров М1621 и М1621.1 с наружным шунтом

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

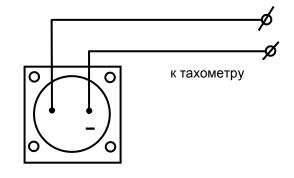


Рисунок 11 - Схема подключения вольтметров М1618 и М1620 для тахометров

			Π					Лист
 Лист	№ докум.	Подп.			3ПА.324.1	171 PЭ		Лист

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Номера листов Входящий №	Всего № Входящий №	
Изм изме- нен- ных ненных не	Под- пись	Дата
<u>Пата</u>		
D D D D D D D D D D D D D D D D D D D		
туру (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Инв. №Дубл.		
B3am. uhb. No		
Basing the control of		
и дата		
Подп.		
- ПОДО		Лист
БОР В В В В В В В В В В В В В В В В В В В		24