ОКП 43 8900

дата

Подп.и

Инв. №дубл.

NHB. No

Взам. 1

Подп. и дата

Инв. № подл.

УТВЕРЖДАЮ

В части раздела 6 «Методика поверки» Руководитель ГЦИ СИ ФГУ «Пензенский ЦСМ»

> А.А.Данилов ___2011 г.

ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ НАПРЯЖЕНИЯ, СИЛЫ ТОКА И МОЩНОСТИ ТРЁХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ФЕ1892-АД

Руководство по эксплуатации 3ПА.499.042 РЭ

АО "Приборостроительный завод "ВИБРАТОР" 194292, Санкт- Петербург, 2-й Верхний пер., д.5 лит.А

Продолжение на следующем листе

Продолжение титульного листа

ОКПД 2 26.51.43.117

УТВЕРЖДАЮ

Генеральный директор

ОАО «Приборостроительный

завод «ВИБРАТОР»

Мофф А.В. Кильдияров

Ekler

2016 г.

УТВЕРЖДАЮ

В части раздела 6 «Методика поверки»

Директор ФГУП

«ВНИИМ им. Д.И. Менделеева»

К.В. Гоголинский

16 4 4 2016 r.

ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ НАПРЯЖЕНИЯ, СИЛЫ ТОКА И МОЩНОСТИ ТРЁХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ФЕ1892-АД

Руководство по эксплуатации 3ПА.499.042 РЭ

ОАО "Приборостроительный завод "ВИБРАТОР" 194292, Санкт- Петербург, 2-й Верхний пер., д.5 лит.А

Alus

Инв. № подл. Подп. и дата Взам. инв.№ Инв. № дубл. Подп.и 33803 г. 230г/2

дата

СОДЕРЖАНИЕ **Терв.** примен. 2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ......4 3 ОПИСАНИЕ ПРЕОБРАЗОВАТЕЛЯ И ПРИНЦИПОВ ЕГО РАБОТЫ......4 3.4 Устройство и работа преобразователя......18 4 ПОДГОТОВКА ПРЕОБРАЗОВАТЕЛЯ К РАБОТЕ31 Справ. Подп. и дата 7 ТЕКУЩИЙ РЕМОНТ.......48 дубл. 9 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ50 NHB.Nº 읟 Взам.инв. Тодп. и дата 3ПА.499.042 РЭ изм Лист Подп. Дата № докум. Пынтя Разраб. Листов Преобразователи измерительные Лит. Лист Инв. № подл. напряжения, силы тока и Пров. Шабанов O₁ 2 51 мощности трёхфазных электрических сетей АО «ВИБРАТОР» Зубенко Н.контр ФЕ1892-АД Утв. Лукин Руководство по эксплуатации

Инв. № подл.

Настоящее руководство по эксплуатации предназначено для изучения технических характеристик, устройства, принципа действия и правил эксплуатации измерительного преобразователя напряжения, силы тока и мощности трёхфазных электрических сетей переменного тока измерительного преобразователя ФЕ1892-АД (в дальнейшем – преобразователь).

1 НОРМАТИВНЫЕ ССЫЛКИ

ГОСТ 12.2.007.0-75 - Изделия электротехнические. Общие требования безопасности.

ГОСТ 12.3.019-80 - Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности.

ГОСТ 32144-2013 - Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения

ГОСТ 14254–2015 - Степени защиты, обеспечиваемые оболочками (код IP).

<u>ГОСТ 15150-69</u> - Машины, приборы и другие технические изделия. Исполнения для различных климатических районов.

ГОСТ 17516.1-90 - Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействиям.

ГОСТ 22261–94 - Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 24855-81 - Преобразователи измерительные тока, напряжения, мощности, частоты, сопротивления аналоговые.

ГОСТ 32137-2013 - Совместимость технических средств электромагнитная. Технические средства для атомных станций. Требования и методы испытаний

ГОСТ 30631-99 - Общие требования к машинам, приборам и другим техническим изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации

ГОСТ 30805.22–2013 - Совместимость технических средств электромагнитная. Оборудование информационных технологий. Радиопомехи индустриальные. Нормы и методы измерений.

НП-001-15 - Общие положения обеспечения безопасности атомных станций. <u>НП–031-01</u> - Нормы проектирования сейсмических атомных станций.

Приказ Минпромторга №2510 от 31 июля 2020 года-«Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»

№ докум. Подп. Дата

3ПA.499.042 P3

- 2.1 Преобразователь в части защиты от поражения электрическим током соответствует требованиям класса II <u>ГОСТ 12.2.007.0</u>.
- 2.2 По безопасности элементов атомных станций преобразователь (в «ОИАЭ») относятся к классу 3 или 4 по <u>НП-001</u>, с соответствующим характером выполняемых функций H, 3, Л, У, О, Т (если преобразователи имеют несколько назначений, то все они входят в их обозначение). Примеры классификационного обозначения 4, 3H, 3T, 33 и т.д..
- 2.3 По защищённости от воздействия твёрдых тел и влаги преобразователь соответствует группе IP20 по ГОСТ 14254.
- 2.4 При эксплуатации необходимо соблюдать требования безопасности <u>ГОСТ 22261</u> и «Правил технической эксплуатации электроустановок потребителей» для установок до 1000 В.
- 2.5 К работе с преобразователем допускаются лица, имеющие группу по электробезопасности не ниже 3, аттестованные в установленном порядке на право проведения работ в электроустановках потребителей до 1000 В и изучившие настоящее руководство по эксплуатации.

3 ОПИСАНИЕ ПРЕОБРАЗОВАТЕЛЯ И ПРИНЦИПОВ ЕГО РАБОТЫ

3.1 Назначение

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

Измерительный преобразователь ФЕ1892-АД предназначен для измерения параметров трёхпроводных и четырёхпроводных электрических сетей переменного трёхфазного тока частотой 50 Гц при работе как в автономном режиме, так и в составе автоматизированных систем измерения и управления на станциях и подстанциях промышленных предприятий.

Преобразователь обеспечивает:

- 1) Измерение следующих параметров электрических сетей переменного трёхфазного тока:
 - действующие значения фазных и линейных (междуфазных) напряжений;
 - действующие значения силы тока фаз;
 - активные, реактивные и полные мощности нагрузки фаз;
 - активные, реактивные и полные мощности трёхфазной системы;
 - коэффициенты мощности фаз и трёхфазной системы;

	_	частота се	ти.	·	•	•	•		,		
					_						
											Лист
								3ПА.499	.042 РЭ		4
Изм	Лист	№ докум.	Подп.	Дата							4

3) Линейное преобразование любого измеряемого параметра в выходные унифицированные сигналы постоянного тока (интерфейс «токовая петля»).

Средняя наработка на отказ преобразователей -150000 ч.

Средний срок службы - 10 лет.

3.2 Условия эксплуатации

- 3.2.1 Нормальные условия применения преобразователя по ГОСТ 22261:
- температура окружающего воздуха (20 ± 5)°С;
- относительная влажность окружающего воздуха от 30 % до 80 %;
- атмосферное давление от 84 до 106 кПа.
- 3.2.2 Рабочие условия применения:
- а) в части воздействия климатических факторов в соответствии с требованиями группы ТМ4.1 по <u>ГОСТ 15150</u> в условиях атмосферы типа II:
- температура окружающего воздуха (в расширенном диапазоне) от минус 30 °C
 до плюс 50 °C;
 - относительная влажность до 95 % при температуре 25 °C;
 - атмосферное давление от 20 до 200 кПа.
 - б) в части воздействия механических факторов преобразователь соответствует:
- по вибрациям и ударам требованиями группы M40 по <u>ГОСТ 17516.1</u> (ГОСТ 30631);
- по сейсмостойкости категории сейсмостойкости II по <u>НП–031</u> и землетрясению в 8 баллов при уровне установки над нулевой отметкой равной 25 м.
 - 3.2.3 Условия электромагнитной совместимости (ЭМС):
- радиопомехи от преобразователя соответствуют требованиям класса Б по <u>ГОСТ 30805.22;</u>
- по устойчивости к помехам преобразователь отвечает требованиям,
 предъявляемым к группе исполнения III по <u>ГОСТ 32137</u>, критерий качества функционирования В.

дата Подп.и Инв. №дубл. Взам. инв.№ Подп. и дата Инв. № подл.

3.3 Технические характеристики

3.3.1 Преобразователь имеет следующие модификации:

ФЕ1892 – АД – X - X - X - X

Входное номинальное напряжение

- 1 100 В линейное, 57,735 В фазное
- 2 381,05 В линейное, 220 В фазное

Номинальный ток

- 1 1 A
- 2 5 A

Диапазон выходного тока

- 1 (- 5...0...+ 5) MA
- 2 (4...20) MA, (4...12...20) MA
- или (0...20) мА.

Напряжение питания

- 1 24 В постоянного или переменного тока
- 2 220 В постоянного или переменного тока
- 3 100 В переменного тока

Подп.и дата	
Инв. №дубл.	
Взам. инв.№	
Подп. и дата	
в. № подл.	

Изм	Лист	№ докум.	Подп.	Дата
•				

3ПА.499.042 РЭ

Таблица 1 – Измерение параметров электрический сетей переменного трёхфазного тока

Сеть трёх- Сеть четырёх-

параметра	Обозначение	проводная	проводная
Действующее значение	U _A , U _B , U _C	_	+
Действующее значение междуфазного напряжения	U _{AB} , U _{BC} , U _{CA}	+	+
Действующее значение	I _A , I _B , I _C	+	+
Активная мощность	Pa, Pb, Pc	_	+
Реактивная мощность	Qa, Qb, Qc	-	+
Полная мощность	Sa, Sb, Sc	_	+
Активная мощность трёхфаз- ной системы	Р	+	+
Реактивная мощность трёх- фазной системы	Q	+	+
Полная мощность	S	+	+
Коэффициент мощности фаз	KMA, KMB, KMC	_	+
Коэффициент мощности трёхфазной системы	K _M	+	+
Частота сети	f	+	+

подл.

знак «-» означает, что параметр не определяется

Изм	Лист	№ докум.	Подп.	Дата

Наименование

3.3.3 Преобразователь обеспечивает измерение параметров электрических сетей переменного трёхфазного тока, номинальные значения которых соответствуют значениям, указанным в таблице 2.

Таблица 2 – Номинальные значения измеряемых параметров электрических сетей переменного трёхфазного тока

	Н	оминальное з	начение						
Напряжение линейное, Uл ном, В	Напряжение фазное, U _{ф ном} , В	Ток фазы І _{ф ном} , А	Мощность фазы, Р _{ф ном} , Вт Q _{ф ном} , вар Ѕ _{ф ном} , В·А	Мощность трёхфазной системы Р _{ном} , Вт Q _{ном} , вар Ѕ _{ном} , В·А					
100	E7 70E	1,0	57,735	173,205					
100	57,735	5,0	288,675	866,025					
224.25	220	1,0	220	660					
381,05	220	5,0	1100	3300					
Номинально	Номинальное значение измеряемой частоты fном, Гц 50								
Номинально	Номинальное значение коэффициента мощности К _{ном} 1								

Под							
Инв. №дубл.							
Взам. инв.№							
Подп. и дата							
подл.				ı	1	In.	407
Инв. № подл.	Изм	Лист	№ докум.	Подп.	Дата	3ПД 499 042 PЭ	1СТ В
					<u> </u>		

т.и дата

Таблица 3 – Значения диапазонов измерений входных сигналов

Наименование параметра	Диапазон изменений параметра
Напряжение фазное/линейное Uф/ Uл (при измерении напряжений, токов, мощности)	от 2 % до 130 % номинального
Напряжение фазное/линейное Uф/ Uл (при измерении частоты, коэффициента мощности)	от 5 % до 130 % номинального
Ток фазы, Іф	от 0 % до 130 % номинального
Коэффициент мощности, Км	- 10+ 1
Частота, f	от 45 до 55 Гц

значениям,

Примечание — Диапазон измерений по цифровому выходу соответствует диапазону изменений параметра, указанному выше. Значения пределов диапазона измерений входных сигналов, соответствующих полному диапазону изменения выходных токовых сигналов, устанавливаются потребителем при конфигурировании преобразователя.

- 3.3.5 Преобразователи выдерживают следующие перегрузки:
- 1) длительные (в течение двух часов) по напряжению, равные 150 % от номинальных значений;
 - 2) кратковременные по току:

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

- десять перегрузок током, превышающим в 2 раза номинальное значение, длительностью по 10 с, с интервалом 10 с;
- две перегрузки током, превышающим в 7 раз номинальное значение, длительностью по 15 с, с интервалом 60 с;

		ность	ю по 15 с, с	интерва	алом 60	C;			
		-	- две перег	рузки т	оком, пр	евышающим	и в 10 раз ног	минальное зна	ачение дли-
		тельн	остью по 5	с, с инте	ервалом	10 c.			
		(3.3.6 Преде	пы доп	ускаемо	й основной	приведённой	погрешности	измерений
		соотв	етствуют зн	ачения	и, приве	дённым в та	блице 4.		
\vdash	-								
	-								Лист
	F						3ПА.499.0	42 PЭ	
	И	зм Лист	№ докум.	Подп.	Дата				9

Пределы допуска-

Наименование параметра	Нормиру- ющее значение	емой основной приведённой по- грешности у, %	Дополни- тельные условия
Действующее значение фазного напряжения	U ф ном	± 0,2	
Действующее значение линейного (междуфазного) напряжения	U л ном	± 0,2	
Действующее значение силы тока фазы	Іном	± 0,2	
Активная мощность нагрузки фазы	Рф ном	± 0,5	
Реактивная мощность нагрузки фазы	Q ф ном	± 0,5	Ки < 5%
Полная мощность нагрузки фазы	Ѕф ном	± 0,5	Ки < 5%
Активная мощность трёхфазной системы	Р _{ном}	± 0,5	
Реактивная мощность трёхфазной системы	Q _{ном}	± 0,5	Ки < 5%
Полная мощность трёхфазной системы	Sном	± 0,5	K _и < 5%
Коэффициент мощности фаз и трёхфазной системы	Кном	± 0,5	
Частота сети (цифровой выход)	f _{HOM}	± 0,02	
Частота сети (аналоговый выход)	f _{ном}	± 0,04	
Ки – коэффициент искажения синусс	оидальности	входных сигналов	

Примечание – По заказу преобразователь может быть изготовлен с другими значениями входных номинальных сигналов.

- 3.3.7 Преобразователь имеет 3 канала измерений напряжения и силы тока.
- измерений 3.3.8 Входное сопротивление ПО входам напряжения (без использования трансформаторов напряжения) для модификаций:
 - ФЕ1892-АД-X-1-X-X не менее 250 кОм;
 - ФЕ1892-АД-X-2- X-X не менее 1 МОм.

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

				_				
						Лист		
					3ПА.499.042 РЭ	10		
м Лι	1СТ	№ докум.	Подп.	Дата				
	м Лі	м Лист	м Лист № докум.	м Лист № докум. Подп.	м Лист № докум. Подп. Дата			

Инв. № подл.

- 3.3.9 Входное сопротивление по входам измерений силы тока (без использования трансформаторов тока) для модификаций:
 - ФЕ1892-АД-X-1-X-X не более 0,1 Ом;
 - ФЕ1892-АД-X-2- X-X не более 0,015 Ом.
- 3.3.10 Преобразователь имеет аналоговый интерфейс с двумя выходами унифицированных сигналов постоянного тока, на которые могут выводиться любые измеряемые параметры в любой конфигурации и масштабе. Каналы являются активными и не требуют внешних источников питания. Настройка токовых выходов производится во внешней программе. Примеры конфигураций показаны на рисунках 1 и 2.

Аналоговый интерфейс имеет следующие параметры:

- 1) диапазон изменений выходного тока и максимальное сопротивление нагрузки указаны в таблице 5.
 - 2) допустимая величина перегрузки (20 ± 1) % от верхнего предела диапазона.
- 3) амплитуда пульсаций выходного тока не превышает ± 0,1 % от диапазона изменений выходного тока;
- 4) время установления выходного тока при скачкообразном изменении входного сигнала от начального до любого значения внутри диапазона измерений (или наоборот) при заданном количестве периодов измерений равном 1, и коэффициенте усреднения равном 1 не более 30 мс.

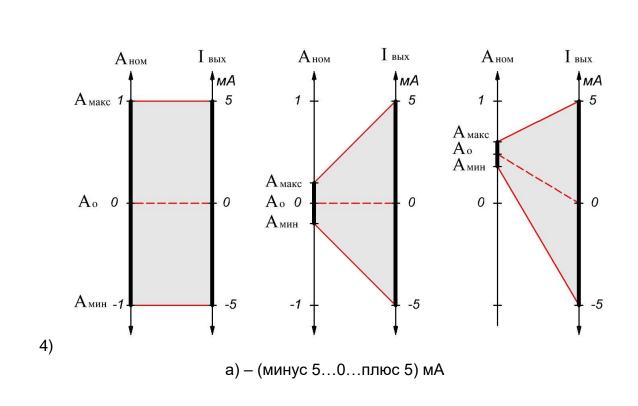
Таблица 5 – Диапазоны изменений выходного тока и максимальные сопротивления нагрузки

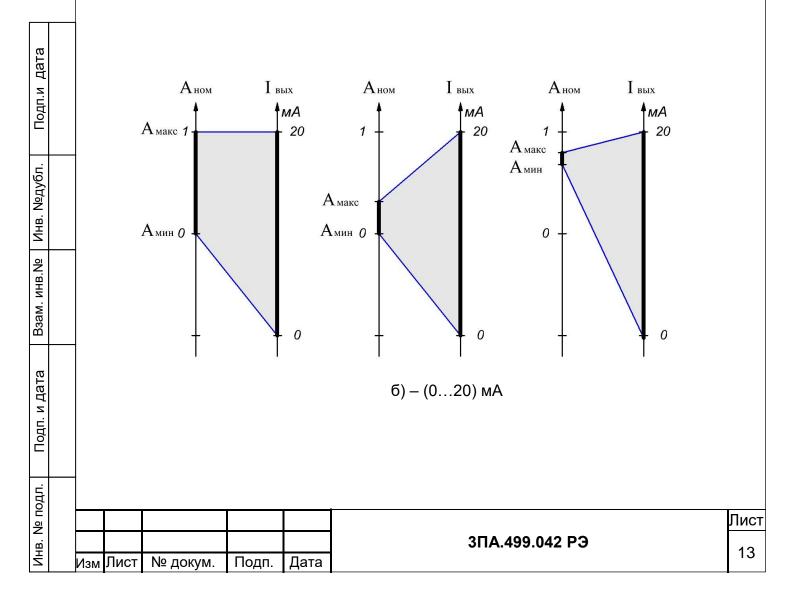
Модификация преобразователя	Диапазон изменений выходного тока, мА	Сопротивление нагрузки, Ом, не более
ФЕ1892-АД-Х-Х-1-Х	(- 5 0+ 5)	2000
ФЕ1892-АД-Х-Х-2-Х	(420)	500

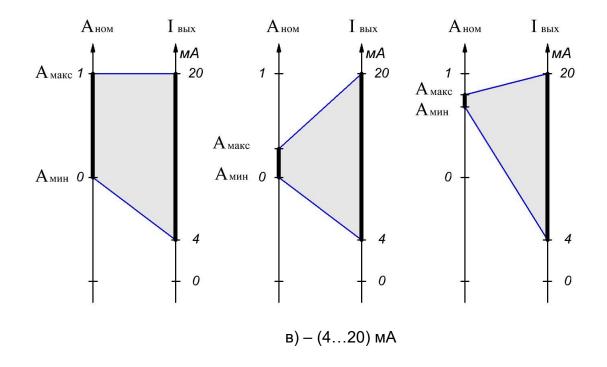
Примечание — При необходимости преобразователь ФЕ1892-АД-X-X-2-X может быть программно переключен пользователем на другие диапазоны выходного тока: (4...12...20 мА; 0...20 мА).

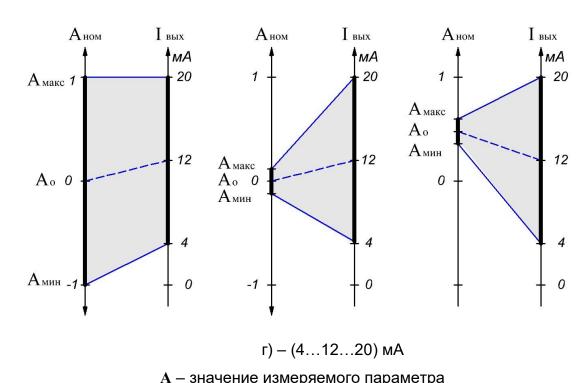
3.3.11 Пределы допускаемой основной приведенной погрешности преобразований любого измеряемого параметра в унифицированный сигнал постоянного тока соответствуют значениям, приведённым в таблице 4.

Изм	Лист	№ докум.	Подп.	Дата

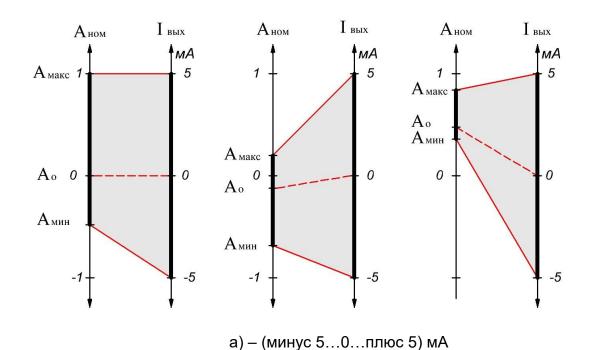

3.3.12 По устойчивости к воздействию температуры преобразователь соответствует группе ТМ 4.1 по <u>ГОСТ 15150</u> в условиях атмосферы типа II с расширением диапазона рабочих температур от минус 30 °C до плюс 50 °C.

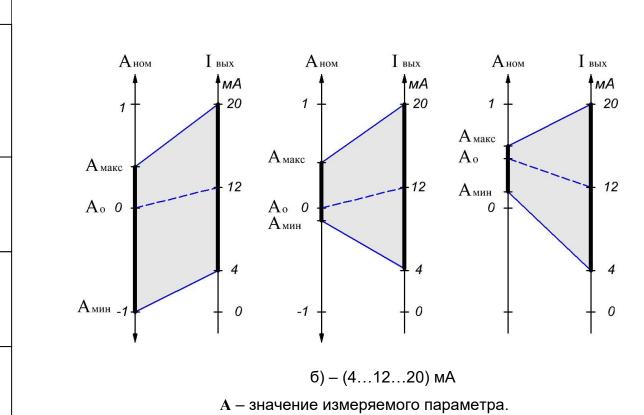

Пределы допускаемой дополнительной приведенной погрешности, вызванной изменением температуры окружающего воздуха на каждые 10 °C от нормальной до любой во всём диапазоне рабочих температур, равны половине предела допускаемой основной погрешности измерений, указанной в <u>3.3.6</u>, таблица 4.


Преобразователь влагоустойчив, при изменении относительной влажности воздуха от нормальной до 95 % при температуре 25 °C пределы допускаемой приведенной погрешности соответствуют значениям, указанным в таблице 4, как по цифровому, так и по унифицированному токовому выходу.


- 3.3.13 Время установления рабочего режима после включения питания не более 15 мин.
- 3.3.14 Преобразователь при управлении через цифровой интерфейс обеспечивает:
 - 1) выдачу цифровых данных об измеряемых параметрах;
 - 2) изменение конфигурации потребителем:
 - выбор типа электрической сети (трёхпроводная или четырёхпроводная);
- выбор параметров сети, выводимых на аналоговые выходы унифицированных сигналов постоянного тока;
- установку диапазона изменения тока аналоговых выходов для ФЕ1892-АД-X-X-2-X (0...20 мA, 4...20 мA или 4...12...20 мA);
- установку участка диапазона изменения измеряемого параметра соответствующего полному диапазону изменения выходного тока (рисунок 1), при этом положительный и отрицательный участки относительно среднего или нулевого значения измеряемого параметра могут иметь разную величину (рисунок 2).
- установку числа периодов, используемых для усреднения результатов измерений;
 - установку параметров фильтра (коэффициента усреднения);
- масштабирование шкалы в зависимости от коэффициентов трансформации используемых трансформаторов напряжения и тока;
- установку адреса каждого цифрового интерфейса преобразователя в системе измерения и управления;
 - установку скорости передачи данных;
 - установку пароля для корректировки масштабных коэффициентов.
 - 3) выполнение корректировки масштабных коэффициентов преобразователя.

3ПА.499.042 РЭ					
	Дата	Подп.	№ докум.	Лист	Изм
·	_		<u>-</u>		





Взам. инв.№ | Инв. №дубл.

Подп. и дата

		Рису	⁄нок 1 –	Симме	ричная конфигурация токового интерфейса.	
_	1		ı	. 1		Лист
-					3ПА.499.042 РЭ	
Из	и Лист	№ докум.	Подп.	Дата		14

Взам. инв.№ | Инв. №дубл.

Подп. и дата

Рисунок 2 - Несимметричная конфигурация токового интерфейса.

					p	
						Лист
					3ПА.499.042 РЭ	15
Изм	Лист	№ докум.	Подп.	Дата		15

- 3.3.15 Изоляция гальванически развязанных цепей преобразователя (входные цепи, цепь питания, выходные цепи) при нормальных условиях применения по 3.2.1 выдерживает в течение 1 минуты действие испытательного напряжения переменного тока с частотой (50 ± 3) Гц, среднеквадратичное значение которого равно:
 - 1) 2 кВ, приложенного между:
- соединенными между собой контактами измерительных входов и соединенными между собой контактами выходов унифицированных сигналов постоянного тока;
- соединенными между собой контактами измерительных входов и соединенными между собой контактами электропитания;
- соединенными между собой контактами измерительных входов и соединенными между собой контактами интерфейсов RS-485;
 - 2) 1,5 кВ, приложенного между:
- соединенными между собой контактами электропитания и соединенными между собой контактами выходов унифицированных сигналов постоянного тока;
- соединенными между собой контактами электропитания и соединенными между собой контактами интерфейсов RS-485.

Величина электрического сопротивления изоляции между указанными цепями не менее 40 МОм.

3.3.16 Питание преобразователя осуществляется переменным напряжением частотой (50 ± 5) Гц или постоянным напряжением.

В случае использования преобразователя ФЕ1892 - АД- 1-X-X-3 или ФЕ1892 - АД-2-X-X-2 для измерения напряжения в диапазоне от минус 30 % до плюс 30 % номинального значения, возможно осуществлять их питание от измеряемой сети.

Обозначение модификаций преобразователя по величине напряжения питания приведены в таблице 6.

- 3.3.17 Потребляемая мощность преобразователя не более 6 B·A.
- 3.3.18 Масса преобразователя не более 0,5 кг.
- 3.3.19 Габаритные размеры не более 100 × 78 × 116 мм.

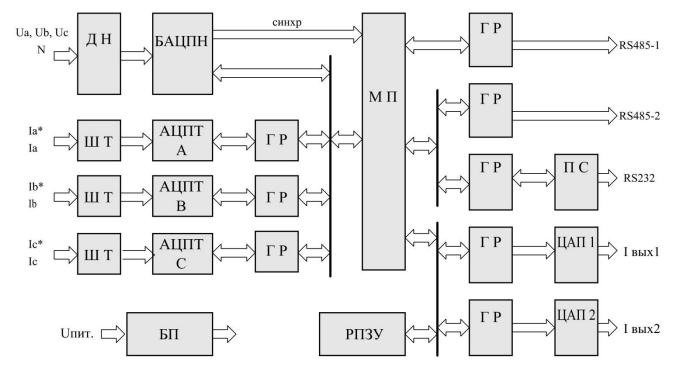
Ī					
Ī					
Ī	⁄1зм	Лист	№ докум.	Подп.	Дата

Таблица 6 – Обозначения модификаций преобразователя по величине напряжения питания

Модификация преобразователя	Напряжение питания, В
ФЕ1892-АД-Х-Х-Х-1	24 $^{+15\%}_{-25\%}$ постоянного или переменного тока
ФЕ1892-АД-Х-Х-Х-2	220 $^{+30\%}_{-30\%}$ переменного тока 220 $^{+30\%}_{-15\%}$ постоянного тока
ФЕ1892 -АД-Х-Х-Х-З	100 ⁺³⁰ % переменного тока

Примечание - Преобразователь сохраняет работоспособность при изменениях напряжения питания:

- -24 В (переменного тока) от минус 40 % до плюс 15 %,
- -24 В (постоянного тока) от минус 25 % до плюс 50 %,
- $-220\ B$ (переменного тока) от минус 35 % до плюс 35 %,
- 220 В (постоянного тока) от минус 20 % до плюс 50 %,
- 100 B (переменного тока) от минус 35 % до плюс 35 %,


Подп.и дата

а также после кратковременных провалов напряжения до нуля.

Ĕ				
Подп. и дата				
Взам. инв. №				
-	-			

3.4 Устройство и работа преобразователя

3.4.1 Функциональная схема преобразователя

ДΗ - узел прецизионных делителей напряжения;

ШΤ - токовый измерительный шунт;

БАЦПН – блок аналого-цифровых преобразователя сигналов напряжения;

АЦПТ - аналого-цифровой преобразователь сигналов тока;

ΓР - узел гальванической развязки;

МΠ - микропроцессор;

дата

Подп.и

.00				ПС -	- преобр	оазова	тель сигналов;	
№ду				РПЗУ -	- репрог	рамми	руемое ПЗУ для хранения настроек;	
Инв. №дубл.				ЦАП -	- цифро	-анало	говые преобразователи;	
		1		БП -	- блок п	итания	I.	
Взам. инв.№						Рису	нок 3 – Схема функциональная	
Подп. и дата								
одл.								
9							Ли	СТ
Инв. № подл.		Изм	Лист	№ докум.	Подп.	Дата	3ΠA.499.042 PЭ	8
	l	F 101VI		1 - Asiyiii	I	Haid	<u> </u>	

Измеряемые сигналы напряжений и токов трёхфазной системы поступают на соответствующие входы преобразователя непосредственно или через измерительные трансформаторы, не входящие в состав преобразователя. Для согласования с рабочим диапазоном используемых АЦП входные сигналы масштабируются посредством резистивных делителей ДН (для сигналов напряжения) и низкоомных измерительных шунтов ШТ (для сигналов тока). Снимаемые с делителей и шунтов напряжения, пропорциональные входным сигналам напряжений и токов, поступают на БАЦПН и БАЦПТ, которые имеют по три измерительных канала включающие в себя нормирующие усилители и аналого-цифровые преобразователи. В БАЦПН обеспечивается также формирование сигнала для определения периода и, соответственно, частоты основной гармоники f1.

БАЦПН и БАЦПТ развязаны между собой, и от других узлов преобразователя с помощью схем гальванической развязки ГР.

Также гальваническую развязку между собой имеют каналы токов.

Последовательность выборок мгновенных значений сигналов преобразуются в цифровые коды и передаются в микропроцессор МП, где выполняется их математическая обработка.

После обработки, результаты вычислений через гальваническую развязку ГР выдаются:

- в виде цифровых данных через интерфейсы RS-485 -1, RS-485 2 (протокол MODBUS-RTU);
 - в виде унифицированных токовых сигналов с выходов ЦАП1 и ЦАП2.

Питание преобразователя осуществляется от блока питания БП, обеспечивающего гальваническую развязку первичной питающей сети Uc от всех узлов преобразователя.

Формулы для расчёта параметров четырёхпроводных и трёхпроводных трёхфазных сетей приведены в таблицах 7 и 8.

дата Подп.и Инв. №дубл. Взам. инв.№ Подп. и дата Инв. № подл.

Изм Лист № докум. Подп. Дата

3ПА.499.042 РЭ

Таблица 7 – Формулы для расчёта параметров четырёхпроводных сетей

Наименование па- раметра	Обозначе- ние	Формула	Примечание
1 Действующее значение фазного напряжения	U _A U _B U _C	$U_{\phi} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_{\phi i}^2}$	
2 Действующее значение силы фазного тока	I _A I _B I _C	$I_{\phi} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (i)^{2}_{\phi i}}$	
3 Действующие значения линейных (междуфазных) напряжений	U _{AB} U _{BC} U _{CA}	$U_{AB} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (u_{Ai} - u_{Bi})^{2}}$ $U_{BC} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (u_{Bi} - u_{Ci})^{2}}$ $U_{CA} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (u_{Ci} - u_{Ai})^{2}}$	
4 Активная мощ- ность нагрузки фаз	P _A P _B P _C	$P_{\mathbf{\phi}} = \frac{1}{n} \sum_{i=1}^{n} (u_{\mathbf{\phi}i} \times (i)_{\mathbf{\phi}i})$	
5 Реактивная мощность нагрузки фаз	Q_A Q_B Q_C	$Q_{\phi} = \frac{1}{n} \sum_{i=1}^{n} (u_{>\phi i} \times (i)_{\phi i})$	$u > \phi i = u \phi i \left(+90^{\circ} \right)$
6 Полная мощ- ность нагрузки фаз	S _A S _B S _C	$S_{\phi} = U_{\phi} \times I_{\phi}$	
7 Коэффициент мощности фаз	К _{МА} К _{МВ} К _{МС}	$K_{M\phi} = \frac{P_{\phi}}{S_{\phi}}$	
8 Активная мощ- ность трёхфазной системы	Р	$P = P_A + P_B + P_C$	
9 Реактивная мощность трёх- фазной системы	Q	$Q = Q_A + Q_B + Q_C$	
10 Полная мощ- ность трёхфазной системы	Sy	$S = S_A + S_B + S_C$	
11 Коэффициент мощности трёх- фазной системы	Км	$K_{M} = \frac{P}{S}$	
12 Частота сети	f	$f = N(T_0)$	по фазе А и В

Инв. № подл.

Подп. и дата

Подп.и дата

Взам. инв. № | Инв. №дубл.

Изм	Лист	№ докум.	Подп.	Дата

Таблица 8 – Формулы для расчёта параметров трёхпроводных сетей

Наименование параметра	Обозна- чение	Формула	Примечание
1 Действующие значения линейных (междуфазных) напряжений	U _{AB} U _{BC} U _{CA}	$U_{AB} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_{ABi}^{2}}$ $U_{BC} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_{BCi}^{2}}$ $U_{CA} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} u_{CAi}^{2}}$	
2 Действующее значение силы фазного тока	I _A I _B I _C	$I_{\mathbf{\phi}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (i)^{2}_{\mathbf{\phi}i}}$	
3 Активная мощ- ность трехфазной системы	P	$P = \frac{1}{n} \sum_{i=1}^{n} (u_{ABi} \times I_{Ai} + u_{CBi} \times I_{Ci})$	
4 Реактивная мощность трех- фазной системы	Q	$Q = \frac{1}{n} \sum_{i=1}^{n} \left(u_{>ABi} \times I_{Ai} + u_{>CBi} \times I_{Ci} \right)$	$u_{>ABi} = u_{ABi} \left(+90^{\circ} \right)$ $u_{>CBi} = u_{CBi} \left(+90^{\circ} \right)$
5 Полная мощ- ность трёхфазной системы	S	$S = \sqrt{P^2 + Q^2}$	
6 Коэффициент мощности трёх- фазной системы	Км	$K_{M} = \frac{P}{S}$	
7 Частота сети	f	$f = N(T_0)$	

В формулах таблиц 7 и 8 использованы следующие обозначения:

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

 $u_{\phi i},\ i_{\phi i}$ — выборки мгновенных значений соответствующих фазных напряжений $U_A,\ U_B,\ U_C$ и фазных токов $I_A,\ I_B,\ I_C.$

 u_{Ai} , u_{Bi} , u_{Ci} , — выборки мгновенных значений фазных напряжений.

 $u_{>\phi i}$ — выборки мгновенных значений фазных напряжений, сдвинутых на 90° относительно выборок $u_{\phi i}$.

 u_{ABi} , u_{BCi} , u_{CAi} — выборки мгновенных значений линейных (междуфазных) напряжений.

 $u_{>ABi},\;u_{>CBi}\;$ - выборки мгновенных значений линейных (междуфазных) напряжений, сдвинутых на 90° относительно выборок $u_{ABi},\;u_{CBi}.$

					3ПА.499.042 РЭ	21	
Изм	Лист	№ докум.	Подп.	Дата			

Преобразователь обеспечивает работу в локальных сетях передачи данных в качестве ведомого устройства через два интерфейса RS-485. Подключение к нему осуществляется при помощи разъема расположенного на передней панели преобразователя. Выходные сигналы интерфейсов гальванически развязаны от других цепей, друг от друга.

При использовании компьютера в качестве ведущего устройства преобразователи ФЕ1892-АД, объединённые в локальную сеть, подключаются к СОМ-порту компьютера через «Преобразователь кода RS-232–RS-485», обеспечивающий автоматическую двунаправленную передачу данных. Программное обеспечение работы такой системы разрабатывается пользователем в соответствии с документом

«Преобразователь ФЕ1892-АД. Протокол информационного обмена 3ПА.499.042.Д12». Используемый протокол совместим с протоколом MODBUS-RTU, который допускает включение в состав системы нескольких ведомых устройств, управляемых от одного ведущего устройства с общей длиной линии связи между устройствами до 1,2 км.

Поставляемая с преобразователем программа позволяет осуществить:

- отображение результатов измерений;
- настройку режимов работы и параметров обработки данных;
- корректировку масштабных коэффициентов входных сигналов по эталонному калибратору;
 - корректировку выходных токов по эталонному амперметру;
 - ведение архива данных, полученных с преобразователя.

При настройке режимов работы и параметров обработки обеспечивается выбор:

- типа включения трёхфазной сети (трёх- или четырёхпроводная);
- параметров сети, выводимых на аналоговые выходы унифицированных сигналов постоянного тока;
- диапазона изменений тока аналоговых выходов (0...20 мA; 4...20 мA; 4...12...20 мA) для модификации ФЕ1892-АД-X-X-2-X;
- участка диапазона изменений измеряемого параметра соответствующего полному диапазону изменений выходного тока;
- адресов и параметров интерфейсов (скорость передачи данных устанавливается из ряда: 9600, 19200, 38400, 57600, 115200 бит/сек), проверка на чётность;

Изм	Лист	№ докум.	Подп.	Дата				

- параметров внешних трансформаторов напряжения и тока (при их подключении);
 - размерностей представляемых результатов измерений;
 - используемого номера СОМ-Порта компьютера;
 - периода опроса преобразователя;
 - числа периодов, используемых для усреднения результатов измерений;
 - параметра фильтра (коэффициента усреднения).

Введённые в преобразователь параметры конфигурации хранятся в энергонезависимой памяти и устанавливаются при каждом последующем включении.

3.4.3 Корректировка масштабных коэффициентов преобразователя

Корректировка масштабных коэффициентов преобразователя в процессе эксплуатации должна проводиться только в случае неудовлетворительных результатов при его очередной поверке.

Корректировка масштабных коэффициентов проводится с использованием программы «Electro 9x» в соответствии с документом «Преобразователи измерительные ФЕ1890-АД, ФЕ1891-АД, ФЕ1892-АД, ФЕ1893-АД. Программа представления параметров. Руководство оператора 05755097.00008-01-34-01»

3.4.4 Конструкция преобразователя

Внешний вид преобразователя приведён на рисунке 4.

Конструктивно преобразователь выполнен в корпусе из трудногорючей пластмассы. Корпус состоит из основной части и крышки. Внутри корпуса расположены печатные платы, на которых смонтированы элементы электрической схемы.

Преобразователь имеет клеммы под винт для подключения измеряемых напряжений и токов, а также разъёмы выходов унифицированных сигналов постоянного тока, питания и интерфейса RS-485.

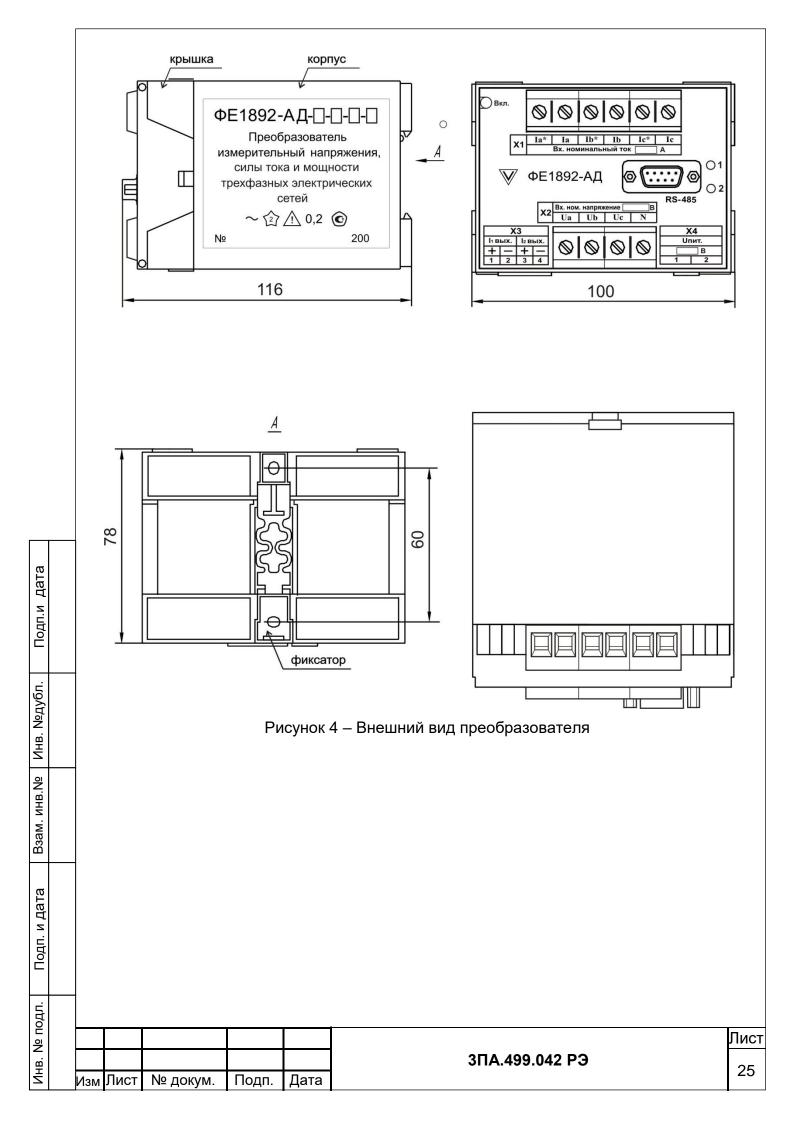
На лицевой панели расположены:

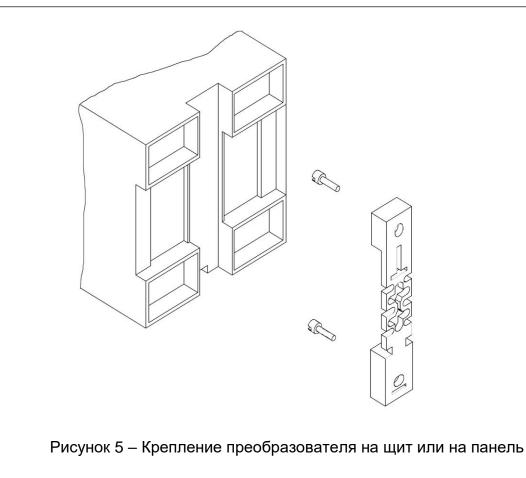
- клеммы входных сигналов: тока X1 (ввод сверху), напряжения X2 (ввод снизу);
 - гнездо для подключения к линиям цифровых интерфейсов RS-485 (контакты 4 A1, 7 B1; и 6 A2, 1 B2);
 - светодиод сигнализации функционального состояния.

Режимы свечения светодиода:

1) светится постоянно зеленым цветом – питание включено, режим измерения;

Изм	Лист	№ докум.	Подп.	Дата


- 2) светится мигающим зеленым цветом нет сигналов синхронизации (Ua и Ub);
 - 3) светится красным цветом перегрузка по одному или нескольким входам;
 - 4) светится желтым цветом включен режим восстановления доступа (установленные настройки цифрового интерфейса приведены в таблице 9);
- 5) светится мигающим желтым цветом— произведен сброс всех установленных параметров и настроек масштабных коэффициентов.


В нижней части корпуса преобразователя расположены вилки соединителя:

- токовых выходов X3 (контакты 1, 2 и 3, 4);
- питания X4 (контакты 1, 2);

Способы крепления преобразователя на щит и DIN-рейку показаны на рисунках 5 и 6.

	l						
Подп.и дата							
Инв. №дубл.							
Взам. инв.№							
Подп. и дата							
одл.							
Инв. № подл.						3ПА.499.042 РЭ	Лист
Инв	Изм	Лист	№ докум.	Подп.	Дата	311A.433.U42 F <i>3</i>	24
				•	J		

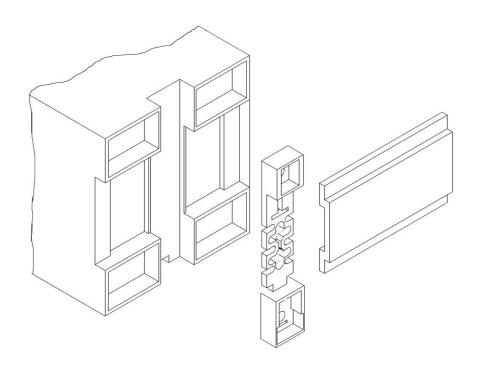


Рисунок 6 – Крепление преобразователя на DIN-рейку

						3ПА.499.042 РЭ
	Изм	Лист	№ докум.	Подп.	Дата	
				_	_	

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

Лист

26

3.4.5 Схемы подключения трёхфазных сетей к преобразователю

Схемы подключения преобразователя для измерения параметров трёхфазных сетей приведены на рисунках 7 – 12.

Схемы на рисунках 7 и 8 обеспечивают измерение всех параметров трёхфазных четырёхпроводных электрических сетей, на рисунках 9 и 10 — всех параметров трёхфазных трёхпроводных электрических сетей, в соответствии с таблицей 1 <u>3.3.2</u>.

Схемы подключения на рисунках 11 и 12 обеспечивают измерение активной, реактивной и полной мощности, коэффициента мощности и частоты, трёхфазных трёхпроводных электрических сетей, а также двух линейных напряжений и силу тока в двух фазах.

Допускается последовательное подключение каналов измерения токов в конфигурации «токовая петля» двух и более преобразователей ФЕ1892-АД, так как они имеют гальваническую развязку между собой и полностью соответствуют требованиям п.3.4.23 ПУЭ.

Подп.и дата						
Инв. №дубл.						
Взам. инв.№						
Подп. и дата						
Инв. № подл.	Изм Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	Лист 27

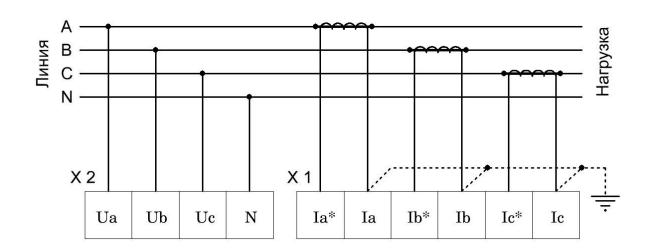
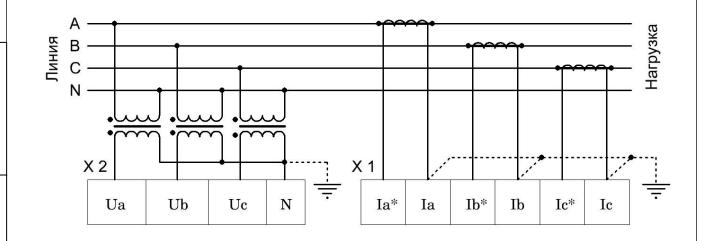



Рисунок 7 – Четырёхпроводная схема прямого измерения напряжения и схема измерения тока с тремя ТТ (схема IV-3ПН3ТТ)

Взам. инв. № | Инв. №дубл.

Подп. и дата

		Рисунок 8	– Четыр	ехпро	водная схема измерения напряжения с тремя ТН и	
		C	кема изі	иерени	ия тока с тремя ТТ (схема IV-3TH3TT)	
•						
						Лист
		NI-			3ПА.499.042 РЭ	28
Изм	Лист	№ докум.	Подп.	Дата		

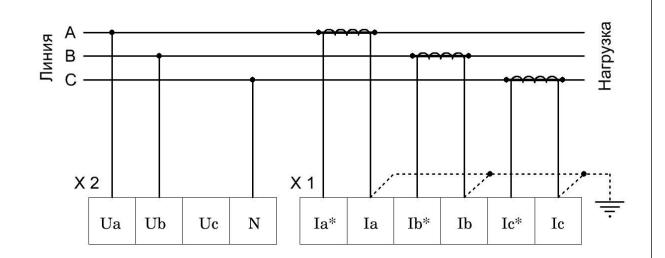
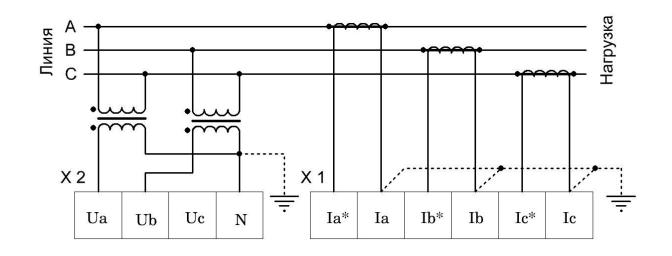



Рисунок 9 – Трёхпроводная схема прямого измерения напряжения и схема измерения тока с тремя ТТ типа 2 (схема III-2ПН3ТТ)

Взам. инв. № | Инв. №дубл.

Подп. и дата

	Рисунок 10 – Трёхпроводная схема измерения напряжения с двумя ТН и схема измерения тока с тремя ТТ типа 2 (схема III-2TH3TT)						
		И	схема и	змерен	ния тока с тремя ТТ типа 2 (схема III-2TH3TT)		
						Лист	
					3ПА.499.042 РЭ	29	
Изм	Лист	№ докум.	Подп.	Дата			

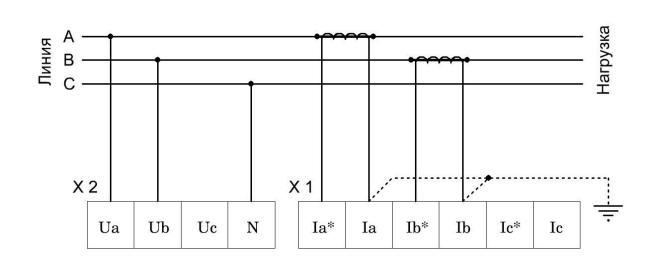
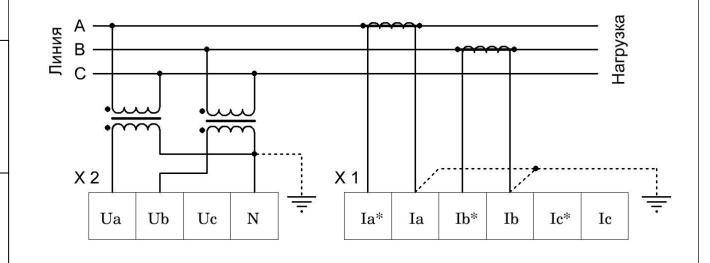



Рисунок 11 – Трёхпроводная схема прямого измерения напряжения и схема измерения тока с двумя ТТ типа 3 (схема III-2ПН2ТТ)

Взам. инв. № | Инв. №дубл.

Подп. и дата

	Рисунок 12 – Трёхпроводная схема измерения напряжения с двумя TH									
	и схема измерения тока с двумя ТТ типа 3 (схема III-2TH2TT)									
_										
				1						
						2FA 400 042 PO	Лист			
	Изм	Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	30			
	1		•	<u> </u>						

4.1. Размещение и монтаж

Преобразователь предназначен для размещения в щитах и пультах. Для обеспечения температурного режима рекомендуется устанавливать зазор между ними не менее 5 мм.

Установку преобразователя можно производить:

- на стенку щита (панели), предварительно установив фиксатор с помощью двух винтов М4 (рисунок 5);
- на DIN-рейку TS35 (DIN TN50022) с помощью фиксатора, расположенного на задней стенке преобразователя (рисунок 6).

4.2. Подготовка к работе

- 4.2.1 Прежде, чем приступить к работе с преобразователем, необходимо озна-комиться с настоящим руководством по эксплуатации.
 - 4.2.2 Перед эксплуатацией необходимо:
- 1) при транспортировании преобразователя в условиях повышенной влажности или низких температур выдержать его в течение 4 часов в нормальных условиях при температуре (20 ± 5) °C и относительной влажности от 30 % до 80 %;
 - 2) осмотреть и убедиться в отсутствии механических повреждений.
 - 4.2.3 Закрепить преобразователь на DIN-рейке или установить на щит.
- 4.2.4 Произвести с помощью разъемов из комплекта преобразователя подключение питания и выходов унифицированных сигналов постоянного тока в соответствии с обозначениями на передней панели преобразователя (рисунок 4).

Подключение измеряемых сигналов выполняется по следующим схемам:

- для 4-х проводной трёхфазной сети в соответствии с рисунками 7, 8;
- для 3-х проводной трёхфазной сети в соответствии с рисунками 9, 10, 11, 12.

Для связи преобразователя с ПК системы управления подключить СОМ-порт компьютера через адаптер RS-232-RS-485 к разъёму на лицевой панели преобразователя (контакты 4 - A1, 7 - B1; или 6 - A2, 1 - B2). При работе преобразователя в условиях сильных электромагнитных помех связь с компьютером выполнить с помощью двухпроводного экранированного кабеля с подключением экрана на контакт «5» этого же разъема.

4.3. Запрещается прокладка линий связи совместно с силовыми проводами, создающими высокочастотные или импульсные помехи.

Инв. № подл. Подп. и дата Взам. инв.№ Инв. №дубл. Подп.и

дата

изм Лист № докум. Подп. Дата

3ПА.499.042 РЭ

- 5.1 Подключить напряжение питания к преобразователю. При этом на лицевой панели должен загореться зелёный светодиод.
- 5.2 Работа с преобразователем проводится в соответствии с указаниями, изложенными в документе «Преобразователи измерительные ФЕ1890-АД, ФЕ1891-АД, ФЕ1892-АД, ФЕ1893-АД. Программа представления параметров. Руководство оператора 05755097.00008-01-34-01».

Данный преобразователь через интерфейс RS-485 может работать с панелью оператора типа ПО1801 (дисплей 5,7 дюймов) или ПО1801 (дисплей 10,4 дюйма) с удалением до 1,2 км. Это позволяет оперативно получать информацию о состоянии контролируемой преобразователем электрической сети без ПК. К панели оператора через СОМ-порт может быть подключено несколько преобразователей.

Примечание - Если, по какой либо причине, не известны настройки цифровых интерфейсов преобразователя и связи с ним нет, можно воспользоваться режимом восстановления доступа. Для этого необходимо:

- подключить напряжение питания к преобразователю;
- установить перемычку между контактами «5» и «9» разъема, расположенного на лицевой панели;
 - снять перемычку, когда светодиод загорится желтым цветом;
 - подключить кабель любого интерфейса RS-485 к этому же разъему.

В этом случае параметры интерфейсов примут вид, отраженный в таблице 9. Используя их, можно получить доступ к преобразователю и изменить настройки как необходи-

Линии	Контакты	Скорость передачи	Четность	Стоп-бит	Адрес
A1, B1	4, 7	38400 б/с	нечет	1	2
A2, B2	6, 1	38400 б/с	нечет	1	3

дата Подп.и Таблица 9 – Параметры интерфейсов для восстановления доступа. Инв. №дубл. Взам. инв.№ Подп. и дата Инв. № подл. 3ПA.499.042 P3 изм Лист № докум. Подп. Дата

6 МЕТОДИКА ПОВЕРКИ

Настоящая методика поверки распространяется на преобразователь измерительный напряжения, силы тока и мощности 3-х фазных электрических сетей ФЕ1892-АД и устанавливает методику первичной и периодической поверок.

Интервал между поверками – 6 лет

6.1. Операции поверки

одп.и дата

При проведении поверки должны выполняться операции, указанные в таблице 10.

Таблица 10 – Операции выполняемые при проведении поверки

Опорошии порории	Номер	Обязательность проведения операции			
Операции поверки	пункта	первичная поверка	периодиче- ская поверка		
1 Внешний осмотр	<u>6.5.1</u>	+	+		
2 Проверка электрического сопро- тивления изоляции	<u>6.6.1</u>	+	_		
3 Опробование	6.6.3.4	+	+		
4 Определение основной погрешно- сти измерений	6.6.3 6.6.3.5 6.6.3.6	+	+		
5 Оформление результатов поверки	6.6.5	+	+		

≧	оти измерении		6.6.3.6			
100	5 Оформление р	езультатов поі	верки <u>6.6.5</u>	+	+	
Инв. №дубл.						
Взам. инв.№						
Подп. и дата						
подл.		1				Пиот
Инв. № подл.	Изм Лист № докум.	Подп. Дата		3ПА.499.042 РЭ		Лист 33
		,				

6.2. Средства поверки

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

При проведении поверки должны применяться средства поверки, указанные в таблице 11.

Таблица 11 - Средства поверки применяемые при проведении поверки

Номер пункта	Наименование, тип основного и вспомогательного средства поверки				
<u>6.6.3.5</u>	Калибратор переменного тока «Ресурс-К2»				
<u>6.6.3.6</u>	ТУ 422953-005-53718944-00				
	1) номинальные значения фазного напряжения : 220 В; 57,7 В номинальные значения тока: 5 А; 1 А погрешность ± 0,05 %;				
	2) значения активной, реактивной и полной мощности погрешность ± 0,1 %;				
	3) фазовый угол: от минус 180 до плюс 180°, погрешность ± 0,03°;				
	4) частота от 45 до 55 Гц, погрешность ± 0,005 Гц.				
<u>6.6.3.5</u>	Персональный компьютер:				
<u>6.6.3.6</u>	 – операционная система Windows XP; – ОЗУ – не менее 256 МБ; – наличие интерфейса RS-232; – наличие CD-ROM; – адаптер (преобразователь кода) RS-485 / RS-232. 				
6.6.3.6	Цифровой измерительный прибор Щ31 Пределы измерений: — тока от 0 до 10 мА; — напряжения от 0 до 10 В; — погрешность ± 0,02 %.				
<u>6.6.1</u>	Мегаомметр E6-24/1, диапазон измерений до 9,99 ГОм Погрешность ± (3 % + 3 е.м.р.)				
6.6.3.5	Катушка электрического сопротивления измерительная Р331				
6.6.3.6	- сопротивление 100 Ом класс точности 0,01				
<u>6.6.3.5</u>	Магазин сопротивлений измерительный Р33				
<u>6.6.3.6</u>	 – сопротивление 500 и 2000 Ом класс точности 0,2 / 6 ⋅ 10⁻⁶ 				

Примечание — Указанные в таблице средства поверки могут быть заменены аналогичными, обеспечивающими требуемую точность и пределы измерений.

						Лист
					3ПА.499.042 РЭ	34
Изм	Лист	№ докум.	Подп.	Дата		
			<u>-</u>			

6.3. Требования безопасности

- 6.3.1 При проведении поверки необходимо соблюдать требования безопасности <u>ГОСТ 12.3.019</u>, <u>ГОСТ 22261</u>, «Правил технической эксплуатации электроустановок потребителей» и «Межотраслевых правил по охране труда при эксплуатации электроустановок», а также требования, изложенные в нормативно-технической и эксплуатационной документации на применяемые средства измерений.
- 6.3.2 Все средства измерений, используемые при поверке, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

6.4. Условия поверки

При проведении поверки должны соблюдаться условия:

- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность от 30 % до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;
- питание в соответствии с 3.3.16.

6.5. Подготовка к поверке

- 6.5.1 Произвести внешний осмотр преобразователя и проверить:
- отсутствие механических повреждений, которые могут повлиять на качество его работы;
 - соответствие номера, указанного на корпусе, номеру, записанному в паспорте;
 - наличие чёткой маркировки.

Преобразователь, имеющий дефекты, бракуют и направляют в ремонт.

- 6.5.2 Установить поверяемый преобразователь и используемые средства поверки в помещении с оговорёнными в <u>6.4</u> условиями;
- 6.5.3 Произвести заземление всех используемых средств измерений и калибратора.

6.6. Проведение поверки

6.6.1 Проверка электрического сопротивления изоляции.

Проверку сопротивления изоляции проводят мегаомметром с рабочим напряжением 1000 В между цепями, указанными в <u>3.3.15</u>.

Измерение сопротивления изоляции следует проводить через 1 мин после приложения напряжения.

Изм	Лист	№ докум.	Подп.	Дата				

Преобразователь считается выдержавшим испытание, если значение сопротивления изоляции составляет не менее 40 МОм.

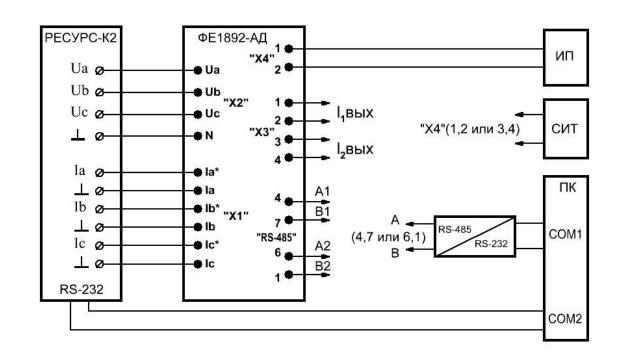
- 6.6.2 Подключить преобразователь по схеме согласно:
- рисунку 13а для 4-х проводной схемы;
- рисунку 13б для 3-х проводной схемы.

Схемы измерения выходного сигнала постоянного тока (СИТ) изображены на рисунке 14.

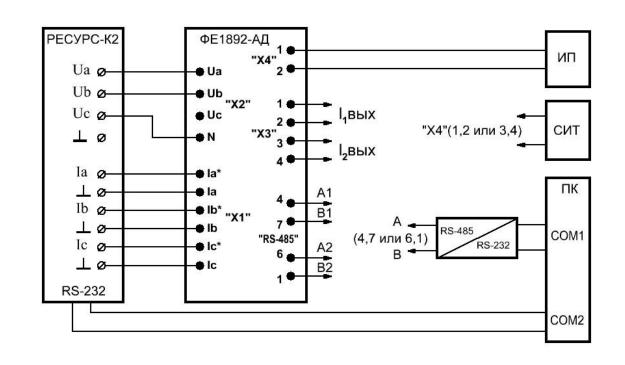
- 6.6.3 Определение метрологических характеристик преобразователя.
- 6.6.3.1 Для выполнения поверки необходимо:

дата

Подп.и


Инв. №дубл.

Взам. инв.№


Подп. и дата

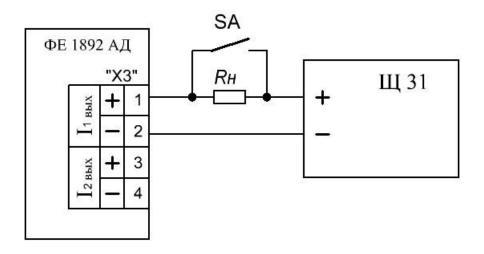
- включить питание преобразователя и прогреть в течение 20 мин;
- провести настроечные операции в соответствии с разделом <u>2.5</u> документа «Преобразователи измерительные ФЕ1890-АД, ФЕ1891-АД, ФЕ1892-АД, ФЕ1893-АД. Программа представления параметров. Руководство оператора 05755097.00008-01-34-01».
- 6.6.3.2 Основную погрешность определять методом сравнения результатов измерений преобразователя с эталонным значением, задаваемым калибратором.
- 6.6.3.3 Для токов, напряжений, мощностей основная погрешность определяется последовательно при 4-х и 3-х проводных схемах подключения, а для частоты только при 4-х проводной схеме подключения.

	Изм	Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	Лист 36	

а) для 4^x - проводного подключения

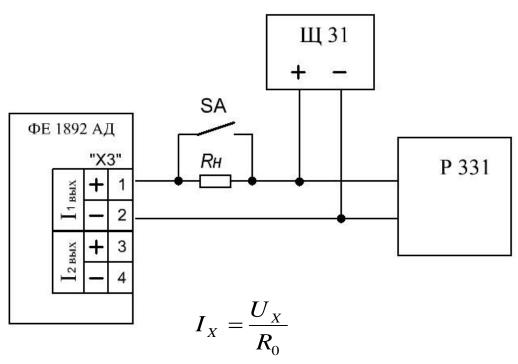
дата

Подп.и


Инв. №дубл.

Взам. инв.№

Подп. и дата


б) для 3^х – проводного подключения

	Ри	исунок 13 –			очений при проверке основной погрешности измере- ений, токов, мощностей и частоты	
				<u> </u>		Лист
Изм	Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	37
		,				-1

 $R_H = 2000 \text{ Om}$

а) для измерения выходного тока (минус 5...0...плюс 5) мА

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

P331 — мера электрического сопротивления R_0 — сопротивление меры 100 Ом

 $R_H = (500 - R_0) \text{ Om}$

 U_{X} – напряжение на зажимах Р 331

		•	•		ого тока (020) мА, (420) мА и (41220) мА измерения тока аналоговых выходов (СИТ)	
			l	· · · · · · · · · · · · · · · · · · ·		Лист
Изм	Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	38

Опробование проводят для 4^x - проводного подключения преобразователя по схеме рисунка 13а в следующей последовательности:

- 1) подать испытательный сигнал от калибратора, для чего запустить программу «Калибратор» и, в соответствии с его руководством по эксплуатации, установить:
 - а) в окне «Напряжение»:
- номинальное значение фазного напряжения соответствующее поверяемому преобразователю;
 - напряжения по фазам, равные половине их номинальных значений;
 - угол сдвига между фазами 120°;
 - частоту от 45 до 55 Гц.

Примечание – В окне отображаются также соответствующие значения линейных (междуфазных) напряжений испытательного сигнала.

- б) в окне «Ток»:
- номинальное значение фазного тока, соответствующее поверяемому преобразователю;
 - токи по фазам, равные половине их номинальных значений;
 - фазовые углы между током и напряжением $I_A = 5^\circ$, $I_B = -10^\circ$, $I_C = 10^\circ$;

Примечание – В окне «Фазы A, B, C» отображаются соответствующие испытательному сигналу значения активной, реактивной и полной мощностей по фазам и суммарные мощности.

- 2) выполнить действие «Передать в калибратор», после чего выходные сигналы напряжений и токов устанавливаются на выходе калибратора.
- 3) открыть окно отображения измеряемых параметров программы «Electro 9x» и убедится в соответствии измеренных значений эталонным испытательным сигналам.
- 4) убедиться, что показания эталонного прибора СИТ, подключаемого к выходам унифицированных сигналов постоянного тока, соответствуют входным сигналам;
 - 5) убедиться, что приведённая погрешность измерений не превышает ± 1 %.
- 6.6.3.5 Проверку основной погрешности измерений токов, напряжений и мощностей на выходе цифрового интерфейса проводить в следующей последовательности:
 - выполнить работы по подготовке к измерениям согласно <u>6.6.3.1</u>;
- установить поочередно параметры испытательного сигнала от калибратора в соответствии с таблицами 12, 13, 14 и 15 для 4-х проводного включения преобразо-

Z	
Взам. инв.№	
Подп. и дата	
Инв. № подл.	

дата

Подп.и

нв. №дубл.

Изм Лист № докум. Подп. Дата

3ПА.499.042 РЭ

Лист

вателя (по схеме поверки на рисунке 13а) и 3-х проводного включения преобразователя (по схеме поверки на рисунке 13б);

- в окне программы «Electro 9x» считать значения измеряемых параметров;
- определить основную приведенную погрешность измерений $Y_{I\!I}$ (%) всех параметров во всех поверяемых точках по формуле

$$Y_{II} = \frac{X_1 - X_0}{X_{HOM}} \cdot 100 \tag{1}$$

где X_I – значение измеренного параметра в единицах измеряемой величины;

 X_{θ} — значение измеряемой величины в проверяемой точке в единицах измеряемой величины, установленное по эталонному средству измерений или расчетное;

 $X_{{\scriptscriptstyle HOM}}$ — номинальное значение измеряемого параметра в единицах измеряемой величины (таблица 2).

Подп.и дата					
Инв. №дубл.					
Взам. инв.№					
Подп. и дата					
Инв. № подл.	Изм Лист № до	кум. Подп.	Дата	ЗПА.499.042 РЭ 40	

Таблица 12 — Значения испытательных сигналов для определения погрешности измерений параметров при изменении фазных напряжений

OT H	іряжению оминаль значения	НОГО		Ток, % эминаль значени:		Фазовый угол между током и напряжением,	Cos φ	Частота f, Гц
Ua	Ub	Uc	la	lb	Ic	градус		
5	5	5	100	100	100			
20	20	20	100	100	100			
50	50	50	100	100	100		1	50,0
80	80	80	100	100	100	0		
100	100	100	100	100	100			
120	120	120	100	100	100			
130*	130*	130*	100	100	100			
	Примеч	ание –*	Только	для циф	рового в	выхода		

Таблица 13 – Значения испытательных сигналов для определения погрешности измерений параметров при изменении фазных токов

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

OT H	от номинального от номинального				Фазовый угол между током и напряжением,	Частота f, Гц		
Ua	Ub	Uc	la	lb	Ic	градус		
100	100	100	5	5	5			
100	100	100	20	20	20			
100	100	100	50	50	50		1	50,0
100	100	100	80	80	80	0		
100	100	100	100	100	100			
100	100	100	120	120	120			
100	100	100	130*	130*	130*			
	Примеч	ание –	* Только	для цис	ррового	выхода		

		100	100	100	12	20	120	120					
		100	100	100	13	0*	130*	130*					
			Примеч	чание	_* To	лькс	для цис	ррового	выхода	ı	1		
				1								Лист	-
								3	3ПА.499.042 Р	Э		41	
Изм	Лист	№ до	кум. Г	Іодп.	Дата								
			-	•								-	-

Таблица 14 – Значения испытательных сигналов для определения погрешности измерений параметров при изменении сдвига фаз между током и напряжением

OT H	іряжению оминаль значения	НОГО		Ток, % оминаль значения		Фазовый угол между током и напряжением,	Cos φ	Часто- та f, Гц
Ua	Ub	Uc	la	lb	lc	градус		
100	100	100	100	100	100	0	1,0	
100	100	100	100	100	100	30	0,866	
100	100	100	100	100	100	45	0,707	
100	100	100	100	100	100	60	0,5	50.0
100	100	100	100	100	100	90	0,0	50,0
100	100	100	100	100	100	120	- 0,5	
100	100	100	100	100	100	150	- 0,866	
100	100	100	100	100	100	180	- 1,0	

Таблица 15 – Значения испытательных сигналов для определения погрешности измерений параметров при изменении частоты

от н	ряжению оминаль значения	ьного от номинального			Фазовый угол между током и напряжением,	Cos φ	Часто- та f, Гц	
Ua	Ub	Uc	la	lb	Ic	градус		т, г ц
100	100	100	100	100	100			45,0
100	100	100	100	100	100			47,5
100	100	100	100	100	100	0	1	50,0
100	100	100	100	100	100			52,5
100	100	100	100	100	100			55,0
100	100	100	100	100	100			45,0
100	100	100	100	100	100			47,5
100	100	100	100	100	100	90	0	50,0
100	100	100	100	100	100			52,5
100	100	100	100	100	100			55,0

Изм	Лист	№ докум.	Подп.	Дата

Подп.и дата

Инв. №дубл.

Взам. инв.№

Подп. и дата

Эталонные значения линейных напряжений, активной, реактивной и полной мощности, а также частоты контролируются в программе "Калибратор" в окнах «Напряжение», «Ток» и «Фазы A, B, C».

Эталонные значения коэффициентов мощности определяются по формулам таблицы 7 и таблицы 8.

Определить основную приведённую погрешность во всех поверяемых точках по цифровому выходу $\mathbf{Y}_{\mathbf{u}}$ (%) по формуле (1).

6.6.3.6 Проверка основной приведенной погрешности преобразований параметров электрических сетей трёхфазного тока в выходной унифицированный сигнал постоянного тока.

Проверку основной приведенной погрешности преобразований параметров электрических сетей трехфазного тока в выходной унифицированный сигнал постоянного тока проводить в следующей погрешности:

- а) выполнить работы по подготовке к измерению согласно 6.6.3.1;
- б) при проверке основной погрешности измерений напряжений и токов:
- установить поочерёдно параметры испытательного сигнала X₀ от калибратора в соответствии с таблицами 12, 13, 16;
 - на выходах I _{1вых} и I _{2вых} измерить значения выходного тока I _х, рисунок 14а, б;
- определить для установленного на преобразователе диапазона изменений выходного тока значения основной приведённой погрешности *Y_A* (%) на всех поверяемых точках, указанных в таблице 16, по формуле:

$$Y_{A} = \frac{I_{O} - I_{p}}{I_{K} - I_{H}} \cdot \frac{X_{K} - X_{H}}{X_{HOM}} \cdot 100$$
 (2)

где: I_0 – значение выходного тока в поверяемой точке, измеренное эталонным прибором;

 I_H , I_K — начальное и конечное значения диапазона изменений выходного тока $\underline{1}$, таблица 5 (I_H = 0 — при изменениях выходного тока в диапазоне от 0 до 5 мА);

 X_{H} , X_{K} — начальное и конечное значения диапазона измерений параметров электрической сети;

 $X_{\text{ном}}$ – то же, что в формуле (1);

 I_{P} — расчётное значение выходного тока в поверяемой точке, определяемое по формуле:

Инв.	
Взам. инв.№	
Подп. и дата	
Инв. № подл.	

дата

Подп.и

изм Лист № докум. Подп. Дата

3ПА.499.042 РЭ

Лист

$$I_{p} = I_{H} + (I_{K} - I_{H}) \cdot \frac{X_{O} - X_{H}}{X_{K} - X_{H}},$$
 (3)

где: X_0 — значение измеряемой величины в поверяемой точке в единицах измеряемой величины, установленное по эталонному средству измерений или расчётное (с учётом знака);

в) при проверке основной приведенной погрешности измерений активной, реактивной и полной мощности, и коэффициента мощности провести все действия, указанные в <u>6.6.3.66</u>), устанавливая поочередно параметры испытательного сигнала X_0 от калибратора в соответствии с таблицей 19.

Определить основную приведённую погрешность во всех поверяемых точках по аналоговому выходу Y_a (%) по формуле (2).

Преобразователь считается прошедшими операцию поверки, если значения основной приведённой погрешности во всех поверяемых точках, как по цифровому выходу, так и по аналоговому выходу, не превышают пределов допускаемой основной приведённой погрешности, указанных <u>3.3.4</u> и <u>1</u>, таблица 3.

Таблица 16 – Значения выходного унифицированного сигнала постоянного тока при определении погрешности преобразований напряжений и токов

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Значение измеряемо- го параметра X ₀ /X _{рд}	Диапазон изменений выходного тока			
(UФ, Uл, Iф) в % от диапазона измерений	(- 50+ 5) мА	(020) мА	(420) мА	
2	0,1	0,4	4, 32	
5	0,25	1,0	4,8	
20	1,0	4,0	7,2	
50	2,5	10,0	12,0	
80	4,0	16,0	16,8	
100	5,0	20,0	20,0	

			100		5,0	20,0	20,0		
			_						
								Лист	
14	Пиот	No noigna	Попп	Пото		3ПА.499.042	2 P 3	44	
ИЗМ	ЛИСТ	№ докум.	Подп.	Дата					

Таблица 17 – Значения выходного унифицированного сигнала постоянного тока при определении погрешности преобразований активной, реактивной и полной мощности нагрузки

Значение измеряемо- го параметра X ₀ /X _{рд}	Диапазон изменений выходного тока				
(P, Q, S, K _M) в % от рабочего диапазона	(- 50+ 5) мА	(020) мА	(420) мА	(41220) мА	
- 100	- 5,0			4,0	
- 70,7	- 3,585			6,344	
- 50	- 2,5			8,0	
- 20	- 1,0			10,4	
0	0,0	0	4,0	12,0	
20	1,0	-	_	13,6	
50	2,5	10	12,0	16,0	
70,7	3,535	-	_	17,656	
100	5,0	20	20,0	20,0	

Подп.и дата							
Инв. №дубл.							
Взам. инв.№							
Подп. и дата							
Инв. № подл.	NsN	л Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	Лист 45

Таблица 18 – Значения испытательных сигналов для определения преобразования параметров в унифицированный сигнал постоянного тока, мощности и коэффициента мощности

Значение измеряемого параметра сети

Значение испытательного сигнала

$\frac{U_{\phi}}{U_{eta H}}$ %	$\frac{I_{\phi}}{I_{\mathcal{I}\mathcal{U}}}\%$	Фф	cos φ _φ	$\frac{P_{\phi}}{P_{_{{\it Д}{\it H}}}}\%$	$rac{Q_{\phi}}{Q_{eta eta}}$ %	$\frac{S_{\phi}}{S_{Z\!\!/\!\!U}}\%$	КФ
100,0	100,0	0	1	100,0	0	100,0	1
70,7	100,0	0	1	70,7	0	70,7	1
50,0	100,0	0	1	50,0	0	50,0	1
20,0	100,0	0	1	20,0	0	20,0	1
100,0	70,7	0	1	70,7	0	70,7	1
100,0	50,0	0	1	50,0	0	50,0	1
100,0	20,0	0	1	20,0	0	20,0	1
100,0	0,0	0	1	0,0	0	0,0	1
100,0	100,0	45	0,707	70,7	70,7	100,0	0,707
100,0	100,0	90	0,0	0,0	100,0	100,0	0,0
100,0	100,0	135	- 0,707	- 70,7	70,7	100,0	- 0,707
100,0	100,0	180	-1,0	- 100,0	0,0	100,0	-1,0
100,0	100,0	225	- 0,707	- 70,7	- 70,7	100,0	- 0,707
100,0	100,0	270	0,0	0,0	-100,0	100,0	0,0
100,0	100,0	315	0,707	70,7	- 70,7	100,0	0,707
100,0	100,0	360	1,0	100,0	0,0	100,0	1,0

Подп.и дата	
Инв. №дубл.	
Взам. инв.№	
Подп. и дата	
№ подл.	

Изм	Лист	№ докум.	Подп.	Дата

Значение измеряемой_	Диапазон изменений выходного тока		
частоты сети, Гц	(- 50+ 5) мА	(41220) мА	
45,0	- 5,0	4,0	
47,5	- 2,5	8,0	
50,0	0,0	12,0	
52,5	2,5	16,0	
55,0	5,0	20,0	

6.6.4 Проверка программного обеспечения

Проверка программного обеспечения преобразователя осуществляется путем проверки идентификационных данных ПО.

Идентификацию ПО производить следующим образом:

- произведите подготовку преобразователя к работе согласно руководству по эксплуатации;
 - проверьте целостность ПО.

После этого будет автоматически рассчитана контрольная сумма метрологически значимой части ПО по полиномиальному алгоритму CRC32. На экране отображается таблица с указанием наименования ПО, номера его версии и контрольной суммы исполняемого кода. Значения отображенных сумм должны соответствовать значениям, указанным с описании типа на преобразователь.

6.6.5 Оформление результатов поверки

Результаты поверок преобразователя оформляют путем записи в протоколе поверки.

При положительных результатах поверки знак поверки наносится на корпус преобразователя в виде пломбы-наклейки и (или) в виде оттиска поверительного клейма ставится в паспорте преобразователя в соответствии с Приказом Минпромторга от 31 июля 2020 г. №2510.

При отрицательных результатах поверки преобразователь признается непригодным к применению и на него выписывается извещение о непригодности в соответствии с Приказом Минпромторга от 31 июля 2020 г. №2510 с указанием причин.

Подп.и дата	
Инв. №дубл.	
Взам. инв.№	
Подп. и дата	
Инв. № подл.	

Изм	Лист	№ докум.	Подп.	Дата

7.1 Перечень возможных неисправностей преобразователя приведен в таблице 20.

Таблица 20 - Перечень возможных неисправностей преобразователя

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Способ устранения
При включении питания не загорается светодиод «Сеть»	Неисправность в цепи питания.	Проверить цепь питания и устранить неисправность
Нет обмена данными с компьютером	Неисправность в цепи цифровых сигналов	Проверить цепь подключения цифровых сигналов и преобразователя кодов RS-485/RS-232. Проверить конфигурацию интерфейса RS-485
Неправильные результаты измерений по фазам трёхфазной сети	Неправильное под- ключение трёхфазной сети к преобразовате- лю	Проверить цепи подключения на соответствие приведённым в разделе 3.4.5 схемам
Показания амперметра, подключённого к цепи токового выхода, не изменяются при изменении измеряемого параметра	Неисправность в цепи токового выхода пре- образователя	Проверить цепь токового вы- хода и устранить неисправ- ность

7.2 Сведения о ремонте

дата

Подп.и

Инв. №дубл.

Взам. инв.№

Подп. и дата

Инв. № подл.

В связи с тем, что преобразователь являются сложными программируемыми изделием электронной техники, и устранение в них неисправностей путём замены отдельных комплектующих может привести к изменению метрологических и программируемых характеристик, ремонт преобразователя рекомендуется производить на предприятии-изготовителе.

- -							Лист	
						3ПА.499.042 РЭ	48	
	Изм	Лист	№ докум.	Подп.	Дата		40	

8 МАРКИРОВАНИЕ, ПЛОМБИРОВАНИЕ, УПАКОВКА

- 8.1 На каждом преобразователе указано:
- 1) обозначение преобразователя;
- 2) товарный знак предприятия-изготовителя;
- 3) порядковый номер преобразователя по системе нумерации предприятияизготовителя;
 - 4) год изготовления;
 - 5) номера и обозначения контактов для обеспечения внешних соединений.
- 8.2 Преобразователь пломбируется путем наклеивания гарантийной наклейки на заднюю и переднюю панель, исключающей вскрытие преобразователя без её повреждения.
- 8.3 Для упаковки преобразователя используется потребительская упаковка из гофрированного картона и транспортная тара (транспортные ящики или контейнеры).
 - 8.4 На потребительскую упаковку нанесен ярлык с указаниями:
 - наименования преобразователя;
 - обозначения преобразователя;
 - количества преобразователей в упаковке;
 - даты упаковки.

дата

8.5 Транспортная маркировка содержит надписи и знаки: «Хрупкое. Осторожно», «Беречь от влаги», «Верх».

— Картин —

9 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

- 9.1 Преобразователь до введения в эксплуатацию следует хранить в упаковке предприятия-изготовителя при температуре окружающего воздуха от плюс 5 °C до плюс 40 °C и относительной влажности 80 % при температуре 25 °C.
- 9.2 Преобразователь в транспортной таре выдерживают воздействие температуры окружающего воздуха от минус 50 °C до плюс 60 °C и относительной влажности до 95 % при температуре 25 °C.
- 9.3 Транспортирование преобразователя производить в упаковке для транспортирования всеми видами закрытого транспорта, а самолетами в отапливаемых герметизированных отсеках.

В связи с постоянной работой по усовершенствованию преобразователя, повышающей его надежность и улучшающей эксплуатационные качества, в конструкцию могут быть внесены незначительные изменения, не отражённые в настоящем издании, не ухудшающие метрологические характеристики преобразователя.

Подп.и дата						
Инв. №дубл.						
Взам. инв.№						
Подп. и дата						
Инв. № подл.	Изм Лист	№ докум.	Подп.	Дата	3ПА.499.042 РЭ	Лист 50

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Номера листов (страниц)				Всего		Входя- щий		
Изм.	изменен- ных	заменен- ных	новых	аннули- рован- ных	листов (стра- ниц) в доку- менте	№ доку- мента	№ сопро- водитель- ного доку- мента и дата	Под- пись	Дата
	<u> </u>		<u> </u>						Іпис
Изм Ли	іст № докуі	м. Подп.	Дата	3ПА.499.042 РЭ					Лис [.] 51